亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Gaussian processes (GPs) are commonly used for geospatial analysis, but they suffer from high computational complexity when dealing with massive data. For instance, the log-likelihood function required in estimating the statistical model parameters for geospatial data is a computationally intensive procedure that involves computing the inverse of a covariance matrix with size n X n, where n represents the number of geographical locations. As a result, in the literature, studies have shifted towards approximation methods to handle larger values of n effectively while maintaining high accuracy. These methods encompass a range of techniques, including low-rank and sparse approximations. Vecchia approximation is one of the most promising methods to speed up evaluating the log-likelihood function. This study presents a parallel implementation of the Vecchia approximation, utilizing batched matrix computations on contemporary GPUs. The proposed implementation relies on batched linear algebra routines to efficiently execute individual conditional distributions in the Vecchia algorithm. We rely on the KBLAS linear algebra library to perform batched linear algebra operations, reducing the time to solution compared to the state-of-the-art parallel implementation of the likelihood estimation operation in the ExaGeoStat software by up to 700X, 833X, 1380X on 32GB GV100, 80GB A100, and 80GB H100 GPUs, respectively. We also successfully manage larger problem sizes on a single NVIDIA GPU, accommodating up to 1M locations with 80GB A100 and H100 GPUs while maintaining the necessary application accuracy. We further assess the accuracy performance of the implemented algorithm, identifying the optimal settings for the Vecchia approximation algorithm to preserve accuracy on two real geospatial datasets: soil moisture data in the Mississippi Basin area and wind speed data in the Middle East.

相關內容

Hidden Markov models (HMM) have been widely used by scientists to model stochastic systems: the underlying process is a discrete Markov chain and the observations are noisy realizations of the underlying process. Determining the number of hidden states for an HMM is a model selection problem, which is yet to be satisfactorily solved, especially for the popular Gaussian HMM with heterogeneous covariance. In this paper, we propose a consistent method for determining the number of hidden states of HMM based on the marginal likelihood, which is obtained by integrating out both the parameters and hidden states. Moreover, we show that the model selection problem of HMM includes the order selection problem of finite mixture models as a special case. We give rigorous proof of the consistency of the proposed marginal likelihood method and provide an efficient computation method for practical implementation. We numerically compare the proposed method with the Bayesian information criterion (BIC), demonstrating the effectiveness of the proposed marginal likelihood method.

Growth in system complexity increases the need for automated techniques dedicated to different log analysis tasks such as Log-based Anomaly Detection (LAD). The latter has been widely addressed in the literature, mostly by means of a variety of deep learning techniques. Despite their many advantages, that focus on deep learning techniques is somewhat arbitrary as traditional Machine Learning (ML) techniques may perform well in many cases, depending on the context and datasets. In the same vein, semi-supervised techniques deserve the same attention as supervised techniques since the former have clear practical advantages. Further, current evaluations mostly rely on the assessment of detection accuracy. However, this is not enough to decide whether or not a specific ML technique is suitable to address the LAD problem in a given context. Other aspects to consider include training and prediction times as well as the sensitivity to hyperparameter tuning, which in practice matters to engineers. In this paper, we present a comprehensive empirical study, in which we evaluate supervised and semi-supervised, traditional and deep ML techniques w.r.t. four evaluation criteria: detection accuracy, time performance, sensitivity of detection accuracy and time performance to hyperparameter tuning. The experimental results show that supervised traditional and deep ML techniques fare similarly in terms of their detection accuracy and prediction time. Moreover, overall, sensitivity analysis to hyperparameter tuning w.r.t. detection accuracy shows that supervised traditional ML techniques are less sensitive than deep learning techniques. Further, semi-supervised techniques yield significantly worse detection accuracy than supervised techniques.

As machine learning models are increasingly deployed in dynamic environments, it becomes paramount to assess and quantify uncertainties associated with distribution shifts. A distribution shift occurs when the underlying data-generating process changes, leading to a deviation in the model's performance. The prediction interval, which captures the range of likely outcomes for a given prediction, serves as a crucial tool for characterizing uncertainties induced by their underlying distribution. In this paper, we propose methodologies for aggregating prediction intervals to obtain one with minimal width and adequate coverage on the target domain under unsupervised domain shift, under which we have labeled samples from a related source domain and unlabeled covariates from the target domain. Our analysis encompasses scenarios where the source and the target domain are related via i) a bounded density ratio, and ii) a measure-preserving transformation. Our proposed methodologies are computationally efficient and easy to implement. Beyond illustrating the performance of our method through a real-world dataset, we also delve into the theoretical details. This includes establishing rigorous theoretical guarantees, coupled with finite sample bounds, regarding the coverage and width of our prediction intervals. Our approach excels in practical applications and is underpinned by a solid theoretical framework, ensuring its reliability and effectiveness across diverse contexts.

Stable partitioned techniques for simulating unsteady fluid-structure interaction (FSI) are known to be computationally expensive when high added-mass is involved. Multiple coupling strategies have been developed to accelerate these simulations, but often use predictors in the form of simple finite-difference extrapolations. In this work, we propose a non-intrusive data-driven predictor that couples reduced-order models of both the solid and fluid subproblems, providing an initial guess for the nonlinear problem of the next time step calculation. Each reduced order model is composed of a nonlinear encoder-regressor-decoder architecture and is equipped with an adaptive update strategy that adds robustness for extrapolation. In doing so, the proposed methodology leverages physics-based insights from high-fidelity solvers, thus establishing a physics-aware machine learning predictor. Using three strongly coupled FSI examples, this study demonstrates the improved convergence obtained with the new predictor and the overall computational speedup realized compared to classical approaches.

As quantum computing is rising in popularity, the amount of quantum programs and the number of developers writing them are increasing rapidly. Unfortunately, writing correct quantum programs is challenging due to various subtle rules developers need to be aware of. Empirical studies show that 40-82% of all bugs in quantum software are specific to the quantum domain. Yet, existing static bug detection frameworks are mostly unaware of quantum-specific concepts, such as circuits, gates, and qubits, and hence miss many bugs. This paper presents LintQ, a comprehensive static analysis framework for detecting bugs in quantum programs. Our approach is enabled by a set of abstractions designed to reason about common concepts in quantum computing without referring to the details of the underlying quantum computing platform. Built on top of these abstractions, LintQ offers an extensible set of ten analyses that detect likely bugs, such as operating on corrupted quantum states, redundant measurements, and incorrect compositions of sub-circuits. We apply the approach to a newly collected dataset of 7,568 real-world Qiskit-based quantum programs, showing that LintQ effectively identifies various programming problems, with a precision of 91.0% in its default configuration with the six best performing analyses. Comparing to a general-purpose linter and two existing quantum-aware techniques shows that almost all problems (92.1%) found by LintQ during our evaluation are missed by prior work. LintQ hence takes an important step toward reliable software in the growing field of quantum computing.

Large language models (LLMs) have become crucial for many generative downstream tasks, leading to an inevitable trend and significant challenge to deploy them efficiently on resource-constrained devices. Structured pruning is a widely used method to address this challenge. However, when dealing with the complex structure of the multiple decoder layers, general methods often employ common estimation approaches for pruning. These approaches lead to a decline in accuracy for specific downstream tasks. In this paper, we introduce a simple yet efficient method that adaptively models the importance of each substructure. Meanwhile, it can adaptively fuse coarse-grained and finegrained estimations based on the results from complex and multilayer structures. All aspects of our design seamlessly integrate into the endto-end pruning framework. Our experimental results, compared with state-of-the-art methods on mainstream datasets, demonstrate average accuracy improvements of 1.1%, 1.02%, 2.0%, and 1.2% for LLaMa-7B,Vicuna-7B, Baichuan-7B, and Bloom-7b1, respectively.

State estimation of nonlinear dynamical systems has long aimed to balance accuracy, computational efficiency, robustness, and reliability. The rapid evolution of various industries has amplified the demand for estimation frameworks that satisfy all these factors. This study introduces a neuromorphic approach for robust filtering of nonlinear dynamical systems: SNN-EMSIF (spiking neural network-extended modified sliding innovation filter). SNN-EMSIF combines the computational efficiency and scalability of SNNs with the robustness of EMSIF, an estimation framework designed for nonlinear systems with zero-mean Gaussian noise. Notably, the weight matrices are designed according to the system model, eliminating the need for a learning process. The framework's efficacy is evaluated through comprehensive Monte Carlo simulations, comparing SNN-EMSIF with EKF and EMSIF. Additionally, it is compared with SNN-EKF in the presence of modeling uncertainties and neuron loss, using RMSEs as a metric. The results demonstrate the superior accuracy and robustness of SNN-EMSIF. Further analysis of runtimes and spiking patterns reveals an impressive reduction of 85% in emitted spikes compared to possible spikes, highlighting the computational efficiency of SNN-EMSIF. This framework offers a promising solution for robust estimation in nonlinear dynamical systems, opening new avenues for efficient and reliable estimation in various industries that can benefit from neuromorphic computing.

Gate-defined quantum dots are a promising candidate system to realize scalable, coupled qubit systems and serve as a fundamental building block for quantum computers. However, present-day quantum dot devices suffer from imperfections that must be accounted for, which hinders the characterization, tuning, and operation process. Moreover, with an increasing number of quantum dot qubits, the relevant parameter space grows sufficiently to make heuristic control infeasible. Thus, it is imperative that reliable and scalable autonomous tuning approaches are developed. In this report, we outline current challenges in automating quantum dot device tuning and operation with a particular focus on datasets, benchmarking, and standardization. We also present ideas put forward by the quantum dot community on how to overcome them.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

北京阿比特科技有限公司