亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study introduces a new framework for the artificial intelligence-assisted characterization of Gram-stained whole-slide images (WSIs). As a test for the diagnosis of bloodstream infections, Gram stains provide critical early data to inform patient treatment. Rapid and reliable analysis of Gram stains has been shown to be positively associated with better clinical outcomes, underscoring the need for improved tools to automate Gram stain analysis. In this work, we developed a novel transformer-based model for Gram-stained WSI classification, which is more scalable to large datasets than previous convolutional neural network (CNN) -based methods as it does not require patch-level manual annotations. We also introduce a large Gram stain dataset from Dartmouth-Hitchcock Medical Center (Lebanon, New Hampshire, USA) to evaluate our model, exploring the classification of five major categories of Gram-stained WSIs: Gram-positive cocci in clusters, Gram-positive cocci in pairs/chains, Gram-positive rods, Gram-negative rods, and slides with no bacteria. Our model achieves a classification accuracy of 0.858 (95% CI: 0.805, 0.905) and an AUC of 0.952 (95% CI: 0.922, 0.976) using five-fold nested cross-validation on our 475-slide dataset, demonstrating the potential of large-scale transformer models for Gram stain classification. We further demonstrate the generalizability of our trained model, which achieves strong performance on external datasets without additional fine-tuning.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · CC · 近似 · CASE · Continuity ·
2024 年 11 月 5 日

We study the computational complexity of computing Bayes-Nash equilibria in first-price auctions with discrete value distributions and discrete bidding space, under general subjective beliefs. It is known that such auctions do not always have pure equilibria. In this paper, we prove that the problem of deciding their existence is NP-complete, even for approximate equilibria. On the other hand, it can be shown that mixed equilibria are guaranteed to exist; however, their computational complexity has not been studied before. We establish the PPAD-completeness of computing a mixed equilibrium and we complement this by an efficient algorithm for finding symmetric approximate equilibria in the special case of iid priors. En route to these results, we develop a computational equivalence framework between continuous and discrete first-price auctions, which can be of independent interest, and which allows us to transfer existing positive and negative results from one setting to the other. Finally, we show that correlated equilibria of the auction can be computed in polynomial time.

We present a general framework for applying learning algorithms and heuristical guidance to the verification of Markov decision processes (MDPs). The primary goal of our techniques is to improve performance by avoiding an exhaustive exploration of the state space, instead focussing on particularly relevant areas of the system, guided by heuristics. Our work builds on the previous results of Br{\'{a}}zdil et al., significantly extending it as well as refining several details and fixing errors. The presented framework focuses on probabilistic reachability, which is a core problem in verification, and is instantiated in two distinct scenarios. The first assumes that full knowledge of the MDP is available, in particular precise transition probabilities. It performs a heuristic-driven partial exploration of the model, yielding precise lower and upper bounds on the required probability. The second tackles the case where we may only sample the MDP without knowing the exact transition dynamics. Here, we obtain probabilistic guarantees, again in terms of both the lower and upper bounds, which provides efficient stopping criteria for the approximation. In particular, the latter is an extension of statistical model-checking (SMC) for unbounded properties in MDPs. In contrast to other related approaches, we do not restrict our attention to time-bounded (finite-horizon) or discounted properties, nor assume any particular structural properties of the MDP.

This study investigates the translation of circumlocution from Arabic to English in a corpus of short stories by renowned Arabic authors. By analyzing the source and target texts, the study aims to identify and categorize circumlocution instances in Arabic and their corresponding renditions in English. The study employs Nida's (1964) translation theory as a framework to assess the appropriateness of the translation strategies employed. It examines the extent to which translators successfully rendered Arabic circumlocution into English, identifying potential challenges and limitations in the translation process. The findings reveal significant similarities between Arabic circumlocution categories and English metadiscourse categories, particularly in terms of textual and interpersonal functions. However, the study also highlights instances where translators encountered difficulties in accurately conveying the nuances of circumlocution, often resorting to strategies like addition, subtraction, and alteration.

Current speech-based LLMs are predominantly trained on extensive ASR and TTS datasets, excelling in tasks related to these domains. However, their ability to handle direct speech-to-speech conversations remains notably constrained. These models often rely on an ASR-to-TTS chain-of-thought pipeline, converting speech into text for processing before generating audio responses, which introduces latency and loses audio features. We propose a method that implicitly internalizes ASR chain of thought into a speech LLM, enhancing its native speech understanding capabilities. Our approach reduces latency and improves the model's native understanding of speech, paving the way for more efficient and natural real-time audio interactions. We also release a large-scale synthetic conversational dataset to facilitate further research.

We present PutnamBench, a new multi-language benchmark for evaluating the ability of neural theorem-provers to solve competition mathematics problems. PutnamBench consists of 1692 hand-constructed formalizations of 640 theorems sourced from the William Lowell Putnam Mathematical Competition, the premier undergraduate-level mathematics competition in North America. All the problems have formalizations in Lean 4 and Isabelle; a substantial subset also has Coq formalizations. PutnamBench requires significant problem-solving ability and proficiency in a broad range of topics taught in undergraduate mathematics courses. We use PutnamBench to evaluate several established neural and symbolic theorem-provers. These approaches can only solve a handful of the PutnamBench problems, establishing the benchmark as a difficult open challenge for research on neural theorem-proving. PutnamBench is available at //github.com/trishullab/PutnamBench.

This study develops an algorithm to solve a variation of the Shortest Common Superstring (SCS) problem. There are two modifications to the base SCS problem. First, one string in the set S is allowed to have up to K mistakes, defined as not matching the SCS in at most K positions. Second, no string in S can be a substring of another in S. The algorithm proposed for the problem is exact.

As human-agent teaming (HAT) research continues to grow, computational methods for modeling HAT behaviors and measuring HAT effectiveness also continue to develop. One rising method involves the use of human digital twins (HDT) to approximate human behaviors and socio-emotional-cognitive reactions to AI-driven agent team members. In this paper, we address three research questions relating to the use of digital twins for modeling trust in HATs. First, to address the question of how we can appropriately model and operationalize HAT trust through HDT HAT experiments, we conducted causal analytics of team communication data to understand the impact of empathy, socio-cognitive, and emotional constructs on trust formation. Additionally, we reflect on the current state of the HAT trust science to discuss characteristics of HAT trust that must be replicable by a HDT such as individual differences in trust tendencies, emergent trust patterns, and appropriate measurement of these characteristics over time. Second, to address the question of how valid measures of HDT trust are for approximating human trust in HATs, we discuss the properties of HDT trust: self-report measures, interaction-based measures, and compliance type behavioral measures. Additionally, we share results of preliminary simulations comparing different LLM models for generating HDT communications and analyze their ability to replicate human-like trust dynamics. Third, to address how HAT experimental manipulations will extend to human digital twin studies, we share experimental design focusing on propensity to trust for HDTs vs. transparency and competency-based trust for AI agents.

Continual learning with deep neural networks presents challenges distinct from both the fixed-dataset and convex continual learning regimes. One such challenge is plasticity loss, wherein a neural network trained in an online fashion displays a degraded ability to fit new tasks. This problem has been extensively studied in both supervised learning and off-policy reinforcement learning (RL), where a number of remedies have been proposed. Still, plasticity loss has received less attention in the on-policy deep RL setting. Here we perform an extensive set of experiments examining plasticity loss and a variety of mitigation methods in on-policy deep RL. We demonstrate that plasticity loss is pervasive under domain shift in this regime, and that a number of methods developed to resolve it in other settings fail, sometimes even performing worse than applying no intervention at all. In contrast, we find that a class of ``regenerative'' methods are able to consistently mitigate plasticity loss in a variety of contexts, including in gridworld tasks and more challenging environments like Montezuma's Revenge and ProcGen.

We report assumption-free bounds for any contrast between the probabilities of the potential outcome under exposure and non-exposure when the confounders are missing not at random. We assume that the missingness mechanism is outcome-independent. We also report a sensitivity analysis method to complement our bounds.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司