亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Altermagnetism, a new magnetic phase, has been theoretically proposed and experimentally verified to be distinct from ferromagnetism and antiferromagnetism. Although altermagnets have been found to possess many exotic physical properties, the very limited availability of known altermagnetic materials~(e.g., 14 confirmed materials) hinders the study of such properties. Hence, discovering more types of altermagnetic materials is crucial for a comprehensive understanding of altermagnetism and thus facilitating new applications in the next generation information technologies, e.g., storage devices and high-sensitivity sensors. Here, we report 25 new altermagnetic materials that cover metals, semiconductors, and insulators, discovered by an AI search engine unifying symmetry analysis, graph neural network pre-training, optimal transport theory, and first-principles electronic structure calculation. The wide range of electronic structural characteristics reveals that various innovative physical properties manifest in these newly discovered altermagnetic materials, e.g., anomalous Hall effect, anomalous Kerr effect, and topological property. Noteworthy, we discovered 8 $i$-wave altermagnetic materials for the first time. Overall, the AI search engine performs much better than human experts and suggests a set of new altermagnetic materials with unique properties, outlining its potential for accelerated discovery of altermagnetic materials.

相關內容

Advances in perception modeling have significantly improved the performance of object tracking. However, the current methods for specifying the target object in the initial frame are either by 1) using a box or mask template, or by 2) providing an explicit language description. These manners are cumbersome and do not allow the tracker to have self-reasoning ability. Therefore, this work proposes a new tracking task -- Instruction Tracking, which involves providing implicit tracking instructions that require the trackers to perform tracking automatically in video frames. To achieve this, we investigate the integration of knowledge and reasoning capabilities from a Large Vision-Language Model (LVLM) for object tracking. Specifically, we propose a tracker called TrackGPT, which is capable of performing complex reasoning-based tracking. TrackGPT first uses LVLM to understand tracking instructions and condense the cues of what target to track into referring embeddings. The perception component then generates the tracking results based on the embeddings. To evaluate the performance of TrackGPT, we construct an instruction tracking benchmark called InsTrack, which contains over one thousand instruction-video pairs for instruction tuning and evaluation. Experiments show that TrackGPT achieves competitive performance on referring video object segmentation benchmarks, such as getting a new state-of the-art performance of 66.5 $\mathcal{J}\&\mathcal{F}$ on Refer-DAVIS. It also demonstrates a superior performance of instruction tracking under new evaluation protocols. The code and models are available at \href{//github.com/jiawen-zhu/TrackGPT}{//github.com/jiawen-zhu/TrackGPT}.

Qatar has undergone distinct waves of COVID-19 infections, compounded by the emergence of variants, posing additional complexities. This research uniquely delves into the varied efficacy of existing vaccines and the pivotal role of vaccination timing in the context of COVID-19. Departing from conventional modeling, we introduce two models that account for the impact of vaccines on infections, reinfections, and deaths. Recognizing the intricacy of these models, we use the Bayesian framework and specifically utilize the Metropolis-Hastings Sampler for estimation of model parameters. The study conducts scenario analyses on two models, quantifying the duration during which the healthcare system in Qatar could have potentially been overwhelmed by an influx of new COVID-19 cases surpassing the available hospital beds. Additionally, the research explores similarities in predictive probability distributions of cumulative infections, reinfections, and deaths, employing the Hellinger distance metric. Comparative analysis, employing the Bayes factor, underscores the plausibility of a model assuming a different susceptibility rate to reinfection, as opposed to assuming the same susceptibility rate for both infections and reinfections. Results highlight the adverse outcomes associated with delayed vaccination, emphasizing the efficacy of early vaccination in reducing infections, reinfections, and deaths. Our research advocates prioritizing early vaccination as a key strategy in effectively combating future pandemics. This study contributes vital insights for evidence-based public health interventions, providing clarity on vaccination strategies and reinforcing preparedness for challenges posed by infectious diseases. The data set and implementation code for this project is made available at \url{//github.com/elizabethamona/VaccinationTiming}.

signSGD is popular in nonconvex optimization due to its communication efficiency. Yet, existing analyses of signSGD rely on assuming that data are sampled with replacement in each iteration, contradicting the practical implementation where data are randomly reshuffled and sequentially fed into the algorithm. We bridge this gap by proving the first convergence result of signSGD with random reshuffling (SignRR) for nonconvex optimization. Given the dataset size $n$, the number of epochs of data passes $T$, and the variance bound of a stochastic gradient $\sigma^2$, we show that SignRR has the same convergence rate $O(\log(nT)/\sqrt{nT} + \|\sigma\|_1)$ as signSGD \citep{bernstein2018signsgd}. We then present SignRVR and SignRVM, which leverage variance-reduced gradients and momentum updates respectively, both converging at $O(\log (nT)/\sqrt{nT} + \log (nT)\sqrt{n}/\sqrt{T})$. In contrast with the analysis of signSGD, our results do not require an extremely large batch size in each iteration to be of the same order as the total number of iterations \citep{bernstein2018signsgd} or the signs of stochastic and true gradients match element-wise with a minimum probability of 1/2 \citep{safaryan2021stochastic}. We also extend our algorithms to cases where data are distributed across different machines, yielding dist-SignRVR and dist-SignRVM, both converging at $O(\log (n_0T)/\sqrt{n_0T} + \log (n_0T)\sqrt{n_0}/\sqrt{T})$, where $n_0$ is the dataset size of a single machine. We back up our theoretical findings through experiments on simulated and real-world problems, verifying that randomly reshuffled sign methods match or surpass existing baselines.

The impression is crucial for the referring physicians to grasp key information since it is concluded from the findings and reasoning of radiologists. To alleviate the workload of radiologists and reduce repetitive human labor in impression writing, many researchers have focused on automatic impression generation. However, recent works on this task mainly summarize the corresponding findings and pay less attention to the radiology images. In clinical, radiographs can provide more detailed valuable observations to enhance radiologists' impression writing, especially for complicated cases. Besides, each sentence in findings usually focuses on single anatomy, so they only need to be matched to corresponding anatomical regions instead of the whole image, which is beneficial for textual and visual features alignment. Therefore, we propose a novel anatomy-enhanced multimodal model to promote impression generation. In detail, we first construct a set of rules to extract anatomies and put these prompts into each sentence to highlight anatomy characteristics. Then, two separate encoders are applied to extract features from the radiograph and findings. Afterward, we utilize a contrastive learning module to align these two representations at the overall level and use a co-attention to fuse them at the sentence level with the help of anatomy-enhanced sentence representation. Finally, the decoder takes the fused information as the input to generate impressions. The experimental results on two benchmark datasets confirm the effectiveness of the proposed method, which achieves state-of-the-art results.

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique known for its ability to capture brain activity non-invasively and at fine spatial resolution (2-3mm). Cortical surface fMRI (cs-fMRI) is a recent development of fMRI that focuses on signals from tissues that have neuronal activities, as opposed to the whole brain. cs-fMRI data is plagued with non-stationary spatial correlations and long temporal dependence which, if inadequately accounted for, can hinder downstream statistical analyses. We propose a fully integrated approach that captures both spatial non-stationarity and varying ranges of temporal dependence across regions of interest. More specifically, we impose non-stationary spatial priors on the latent activation fields and model temporal dependence via fractional Gaussian errors of varying Hurst parameters, which can be studied through a wavelet transformation and its coefficients' variances at different scales. We demonstrate the performance of our proposed approach through simulations and an application to a visual working memory task cs-fMRI dataset.

Modern neural recording techniques allow neuroscientists to obtain spiking activity of multiple neurons from different brain regions over long time periods, which requires new statistical methods to be developed for understanding structure of the large-scale data. In this paper, we develop a bi-clustering method to cluster the neural spiking activity spatially and temporally, according to their low-dimensional latent structures. The spatial (neuron) clusters are defined by the latent trajectories within each neural population, while the temporal (state) clusters are defined by (populationally) synchronous local linear dynamics shared with different periods. To flexibly extract the bi-clustering structure, we build the model non-parametrically, and develop an efficient Markov chain Monte Carlo (MCMC) algorithm to sample the posterior distributions of model parameters. Validating our proposed MCMC algorithm through simulations, we find the method can recover unknown parameters and true bi-clustering structures successfully. We then apply the proposed bi-clustering method to multi-regional neural recordings under different experiment settings, where we find that simultaneously considering latent trajectories and spatial-temporal clustering structures can provide us with a more accurate and interpretable result. Overall, the proposed method provides scientific insights for large-scale (counting) time series with elongated recording periods, and it can potentially have application beyond neuroscience.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司