Qatar has undergone distinct waves of COVID-19 infections, compounded by the emergence of variants, posing additional complexities. This research uniquely delves into the varied efficacy of existing vaccines and the pivotal role of vaccination timing in the context of COVID-19. Departing from conventional modeling, we introduce two models that account for the impact of vaccines on infections, reinfections, and deaths. Recognizing the intricacy of these models, we use the Bayesian framework and specifically utilize the Metropolis-Hastings Sampler for estimation of model parameters. The study conducts scenario analyses on two models, quantifying the duration during which the healthcare system in Qatar could have potentially been overwhelmed by an influx of new COVID-19 cases surpassing the available hospital beds. Additionally, the research explores similarities in predictive probability distributions of cumulative infections, reinfections, and deaths, employing the Hellinger distance metric. Comparative analysis, employing the Bayes factor, underscores the plausibility of a model assuming a different susceptibility rate to reinfection, as opposed to assuming the same susceptibility rate for both infections and reinfections. Results highlight the adverse outcomes associated with delayed vaccination, emphasizing the efficacy of early vaccination in reducing infections, reinfections, and deaths. Our research advocates prioritizing early vaccination as a key strategy in effectively combating future pandemics. This study contributes vital insights for evidence-based public health interventions, providing clarity on vaccination strategies and reinforcing preparedness for challenges posed by infectious diseases. The data set and implementation code for this project is made available at \url{//github.com/elizabethamona/VaccinationTiming}.
Spatial statistical modeling and prediction involve generating and manipulating an n*n symmetric positive definite covariance matrix, where n denotes the number of spatial locations. However, when n is large, processing this covariance matrix using traditional methods becomes prohibitive. Thus, coupling parallel processing with approximation can be an elegant solution to this challenge by relying on parallel solvers that deal with the matrix as a set of small tiles instead of the full structure. Each processing unit can process a single tile, allowing better performance. The approximation can also be performed at the tile level for better compression and faster execution. The Tile Low-Rank (TLR) approximation, a tile-based approximation algorithm, has recently been used in spatial statistics applications. However, the quality of TLR algorithms mainly relies on ordering the matrix elements. This order can impact the compression quality and, therefore, the efficiency of the underlying linear solvers, which highly depends on the individual ranks of each tile. Thus, herein, we aim to investigate the accuracy and performance of some existing ordering algorithms that are used to order the geospatial locations before generating the spatial covariance matrix. Furthermore, we highlight the pros and cons of each ordering algorithm in the context of spatial statistics applications and give hints to practitioners on how to choose the ordering algorithm carefully. We assess the quality of the compression and the accuracy of the statistical parameter estimates of the Mat\'ern covariance function using TLR approximation under various ordering algorithms and settings of correlations.
6G promises a paradigm shift in which positioning and sensing are inherently integrated, enhancing not only the communication performance but also enabling location- and context-aware services. Historically, positioning and sensing have been viewed through the lens of cost and performance trade-offs, implying an escalated demand for resources, such as radio, physical, and computational resources, for improved performance. However, 6G goes beyond this traditional perspective to encompass a set of broader values, namely sustainability, inclusiveness, and trustworthiness. From a joint industrial/academic perspective, this paper aims to shed light on these important value indicators and their relationship with the conventional key performance indicators in the context of positioning and sensing.
We conduct a systematic study of the approximation properties of Transformer for sequence modeling with long, sparse and complicated memory. We investigate the mechanisms through which different components of Transformer, such as the dot-product self-attention, positional encoding and feed-forward layer, affect its expressive power, and we study their combined effects through establishing explicit approximation rates. Our study reveals the roles of critical parameters in the Transformer, such as the number of layers and the number of attention heads, and these insights also provide natural suggestions for alternative architectures.
Mixture of Experts (MoE) models have emerged as a primary solution for reducing the computational cost of Large Language Models. In this work, we analyze their scaling properties, incorporating an expanded range of variables. Specifically, we introduce a new hyperparameter, granularity, whose adjustment enables precise control over the size of the experts. Building on this, we establish scaling laws for fine-grained MoE, taking into account the number of training tokens, model size, and granularity. Leveraging these laws, we derive the optimal training configuration for a given computational budget. Our findings not only show that MoE models consistently outperform dense Transformers but also highlight that the efficiency gap between dense and MoE models widens as we scale up the model size and training budget. Furthermore, we demonstrate that the common practice of setting the size of experts in MoE to mirror the feed-forward layer is not optimal at almost any computational budget.
Segmentations are crucial in medical imaging to obtain morphological, volumetric, and radiomics biomarkers. Manual segmentation is accurate but not feasible in the radiologist's clinical workflow, while automatic segmentation generally obtains sub-par performance. We therefore developed a minimally interactive deep learning-based segmentation method for soft-tissue tumors (STTs) on CT and MRI. The method requires the user to click six points near the tumor's extreme boundaries. These six points are transformed into a distance map and serve, with the image, as input for a Convolutional Neural Network. For training and validation, a multicenter dataset containing 514 patients and nine STT types in seven anatomical locations was used, resulting in a Dice Similarity Coefficient (DSC) of 0.85$\pm$0.11 (mean $\pm$ standard deviation (SD)) for CT and 0.84$\pm$0.12 for T1-weighted MRI, when compared to manual segmentations made by expert radiologists. Next, the method was externally validated on a dataset including five unseen STT phenotypes in extremities, achieving 0.81$\pm$0.08 for CT, 0.84$\pm$0.09 for T1-weighted MRI, and 0.88\pm0.08 for previously unseen T2-weighted fat-saturated (FS) MRI. In conclusion, our minimally interactive segmentation method effectively segments different types of STTs on CT and MRI, with robust generalization to previously unseen phenotypes and imaging modalities.
We provide polynomial-time reductions between three search problems from three distinct areas: the P-matrix linear complementarity problem (P-LCP), finding the sink of a unique sink orientation (USO), and a variant of the $\alpha$-Ham Sandwich problem. For all three settings, we show that "two choices are enough", meaning that the general non-binary version of the problem can be reduced in polynomial time to the binary version. This specifically means that generalized P-LCPs are equivalent to P-LCPs, and grid USOs are equivalent to cube USOs. These results are obtained by showing that both the P-LCP and our $\alpha$-Ham Sandwich variant are equivalent to a new problem we introduce, P-Lin-Bellman. This problem can be seen as a new tool for formulating problems as P-LCPs.
Robust fine-tuning aims to ensure performance on out-of-distribution (OOD) samples, which is sometimes compromised by pursuing adaptation on in-distribution (ID) samples. However, another criterion for reliable machine learning -- confidence calibration has been overlooked despite its increasing demand for real-world high-stakes applications, e.g., autonomous driving. We raise concerns about the calibration of fine-tuned vision-language models (VLMs) under distribution shift by showing that naive fine-tuning and even state-of-the-art robust fine-tuning hurt the calibration of pre-trained VLMs, especially on OOD datasets. We first show the OOD calibration error is bounded from above with ID calibration errors and domain discrepancy between ID and OOD. From this analysis, we propose CaRot, a calibrated robust fine-tuning method that incentivizes ID calibration and robust prediction across domains to reduce the upper bound of OOD calibration error. Extensive experiments on three types of distribution shifts (natural, synthetic, and adversarial) on ImageNet-1K classification demonstrate the effectiveness of CaRot across diverse environments. We justify the empirical success of CaRot through our theoretical analysis.
Probabilistic forecasting of irregularly sampled multivariate time series with missing values is an important problem in many fields, including health care, astronomy, and climate. State-of-the-art methods for the task estimate only marginal distributions of observations in single channels and at single timepoints, assuming a fixed-shape parametric distribution. In this work, we propose a novel model, ProFITi, for probabilistic forecasting of irregularly sampled time series with missing values using conditional normalizing flows. The model learns joint distributions over the future values of the time series conditioned on past observations and queried channels and times, without assuming any fixed shape of the underlying distribution. As model components, we introduce a novel invertible triangular attention layer and an invertible non-linear activation function on and onto the whole real line. We conduct extensive experiments on four datasets and demonstrate that the proposed model provides $4$ times higher likelihood over the previously best model.
Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.
Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.