Deep generative models have made tremendous progress in modeling complex data, often exhibiting generation quality that surpasses a typical human's ability to discern the authenticity of samples. Undeniably, a key driver of this success is enabled by the massive amounts of web-scale data consumed by these models. Due to these models' striking performance and ease of availability, the web will inevitably be increasingly populated with synthetic content. Such a fact directly implies that future iterations of generative models will be trained on both clean and artificially generated data from past models. In this paper, we develop a framework to rigorously study the impact of training generative models on mixed datasets -- from classical training on real data to self-consuming generative models trained on purely synthetic data. We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough and the proportion of clean training data (w.r.t. synthetic data) is large enough. We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models on CIFAR10 and FFHQ.
Counterfactual explanations provide a popular method for analyzing the predictions of black-box systems, and they can offer the opportunity for computational recourse by suggesting actionable changes on how to change the input to obtain a different (i.e.\ more favorable) system output. However, recent work highlighted their vulnerability to different types of manipulations. This work studies the vulnerability of counterfactual explanations to data poisoning. We formally introduce and investigate data poisoning in the context of counterfactual explanations for increasing the cost of recourse on three different levels: locally for a single instance, or a sub-group of instances, or globally for all instances. In this context, we characterize and prove the correctness of several different data poisonings. We also empirically demonstrate that state-of-the-art counterfactual generation methods and toolboxes are vulnerable to such data poisoning.
Hidden Markov models (HMM) have been widely used by scientists to model stochastic systems: the underlying process is a discrete Markov chain and the observations are noisy realizations of the underlying process. Determining the number of hidden states for an HMM is a model selection problem, which is yet to be satisfactorily solved, especially for the popular Gaussian HMM with heterogeneous covariance. In this paper, we propose a consistent method for determining the number of hidden states of HMM based on the marginal likelihood, which is obtained by integrating out both the parameters and hidden states. Moreover, we show that the model selection problem of HMM includes the order selection problem of finite mixture models as a special case. We give rigorous proof of the consistency of the proposed marginal likelihood method and provide an efficient computation method for practical implementation. We numerically compare the proposed method with the Bayesian information criterion (BIC), demonstrating the effectiveness of the proposed marginal likelihood method.
Existing debiasing methods inevitably make unreasonable or undesired predictions as they are designated and evaluated to achieve parity across different social groups but leave aside individual facts, resulting in modified existing knowledge. In this paper, we first establish a new bias mitigation benchmark BiasKE leveraging existing and additional constructed datasets, which systematically assesses debiasing performance by complementary metrics on fairness, specificity, and generalization. Meanwhile, we propose a novel debiasing method, Fairness Stamp (FAST), which enables editable fairness through fine-grained calibration on individual biased knowledge. Comprehensive experiments demonstrate that FAST surpasses state-of-the-art baselines with remarkable debiasing performance while not hampering overall model capability for knowledge preservation, highlighting the prospect of fine-grained debiasing strategies for editable fairness in LLMs.
Recent advancements in foundation models have yielded impressive performance across a wide range of tasks. Meanwhile, for specific applications, practitioners have been developing specialized application models. To enjoy the benefits of both kinds of models, one natural path is to transfer the knowledge in foundation models into specialized application models, which are generally more efficient for serving. Techniques from knowledge distillation may be applied here, where the application model learns to mimic the foundation model. However, specialized application models and foundation models have substantial gaps in capacity, employing distinct architectures, using different input features from different modalities, and being optimized on different distributions. These differences in model characteristics lead to significant challenges for distillation methods. In this work, we propose creating a teaching committee comprising both foundation model teachers and complementary teachers. Complementary teachers possess model characteristics akin to the student's, aiming to bridge the gap between the foundation model and specialized application models for a smoother knowledge transfer. Further, to accommodate the dissimilarity among the teachers in the committee, we introduce DiverseDistill, which allows the student to understand the expertise of each teacher and extract task knowledge. Our evaluations demonstrate that adding complementary teachers enhances student performance. Finally, DiverseDistill consistently outperforms baseline distillation methods, regardless of the teacher choices, resulting in significantly improved student performance.
According to many researchers, conceptual model (CM) development is a hard task, and system requirements are difficult to collect, causing many miscommunication problems. CMs require more than modeling ability alone - they first require an understanding of the targeted domain that the model attempts to represent. Accordingly, a preconceptual modeling (pre-CM) stage is intended to address ontological issues before typical CM development is initiated. It involves defining a portion of reality when entities and processes are differentiated and integrated as unified wholes. This pre-CM phase forms the focus of research in this paper. The purpose is not show how to model; rather, it is to demonstrate how to establish a metaphysical basis of the involved portion of reality. To demonstrate such a venture, we employ the so-called thinging machine (TM) modeling that has been proposed as a high-level CM. A TM model integrates staticity and dynamism grounded in a fundamental construct called a thimac (things/machine). It involves two modes of reality, existence (events) and subsistence (regions - roughly, specifications of things and processes). Currently, the dominant approach in CM has evolved to limit its scope of application to develop ontological categorization (types of things). In the TM approach, pre-CM metaphysics is viewed as a part and parcel of CM itself. The general research problem is how to map TM constructs to what is out there in the targeted domain. Discussions involve the nature of thimacs (things and processes) and subsistence and existence as they are superimposed over each other in reality. Specifically, we make two claims, (a) the perceptibility of regions as a phenomenon and (b) the distinctiveness of existence as a construct for events. The results contribute to further the understanding of TM modeling in addition to introducing some metaphysical insights.
Efficient and robust data clustering remains a challenging task in the field of data analysis. Recent efforts have explored the integration of granular-ball (GB) computing with clustering algorithms to address this challenge, yielding promising results. However, existing methods for generating GBs often rely on single indicators to measure GB quality and employ threshold-based or greedy strategies, potentially leading to GBs that do not accurately capture the underlying data distribution. To address these limitations, this article introduces a novel GB generation method. The originality of this method lies in leveraging the principle of justifiable granularity to measure the quality of a GB for clustering tasks. To be precise, we define the coverage and specificity of a GB and introduce a comprehensive measure for assessing GB quality. Utilizing this quality measure, the method incorporates a binary tree pruning-based strategy and an anomaly detection method to determine the best combination of sub-GBs for each GB and identify abnormal GBs, respectively. Compared to previous GB generation methods, the new method maximizes the overall quality of generated GBs while ensuring alignment with the data distribution, thereby enhancing the rationality of the generated GBs. Experimental results obtained from both synthetic and publicly available datasets underscore the effectiveness of the proposed GB generation method, showcasing improvements in clustering accuracy and normalized mutual information.
Ensuring data privacy in machine learning models is critical, particularly in distributed settings where model gradients are typically shared among multiple parties to allow collaborative learning. Motivated by the increasing success of recovering input data from the gradients of classical models, this study addresses a central question: How hard is it to recover the input data from the gradients of quantum machine learning models? Focusing on variational quantum circuits (VQC) as learning models, we uncover the crucial role played by the dynamical Lie algebra (DLA) of the VQC ansatz in determining privacy vulnerabilities. While the DLA has previously been linked to the classical simulatability and trainability of VQC models, this work, for the first time, establishes its connection to the privacy of VQC models. In particular, we show that properties conducive to the trainability of VQCs, such as a polynomial-sized DLA, also facilitate the extraction of detailed snapshots of the input. We term this a weak privacy breach, as the snapshots enable training VQC models for distinct learning tasks without direct access to the original input. Further, we investigate the conditions for a strong privacy breach where the original input data can be recovered from these snapshots by classical or quantum-assisted polynomial time methods. We establish conditions on the encoding map such as classical simulatability, overlap with DLA basis, and its Fourier frequency characteristics that enable such a privacy breach of VQC models. Our findings thus play a crucial role in detailing the prospects of quantum privacy advantage by guiding the requirements for designing quantum machine learning models that balance trainability with robust privacy protection.
Visual prompt tuning (VPT) is a promising solution incorporating learnable prompt tokens to customize pre-trained models for downstream tasks. However, VPT and its variants often encounter challenges like prompt initialization, prompt length, and subpar performance in self-supervised pretraining, hindering successful contextual adaptation. This study commences by exploring the correlation evolvement between prompts and patch tokens during proficient training. Inspired by the observation that the prompt tokens tend to share high mutual information with patch tokens, we propose initializing prompts with downstream token prototypes. The strategic initialization, a stand-in for the previous initialization, substantially improves performance in fine-tuning. To refine further, we optimize token construction with a streamlined pipeline that maintains excellent performance with almost no increase in computational expenses compared to VPT. Exhaustive experiments show our proposed approach outperforms existing methods by a remarkable margin. For instance, it surpasses full fine-tuning in 19 out of 24 tasks, using less than 0.4% of learnable parameters on the FGVC and VTAB-1K benchmarks. Notably, our method significantly advances the adaptation for self-supervised pretraining, achieving impressive task performance gains of at least 10% to 30%. Besides, the experimental results demonstrate the proposed SPT is robust to prompt lengths and scales well with model capacity and training data size. We finally provide an insightful exploration into the amount of target data facilitating the adaptation of pre-trained models to downstream tasks. The code is available at //github.com/WangYZ1608/Self-Prompt-Tuning.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
Recent years have seen important advances in the quality of state-of-the-art models, but this has come at the expense of models becoming less interpretable. This survey presents an overview of the current state of Explainable AI (XAI), considered within the domain of Natural Language Processing (NLP). We discuss the main categorization of explanations, as well as the various ways explanations can be arrived at and visualized. We detail the operations and explainability techniques currently available for generating explanations for NLP model predictions, to serve as a resource for model developers in the community. Finally, we point out the current gaps and encourage directions for future work in this important research area.