Plug & Play methods combine proximal algorithms with denoiser priors to solve inverse problems. These methods rely on the computability of the proximal operator of the data fidelity term. In this paper, we propose a Plug & Play framework based on linearized ADMM that allows us to bypass the computation of intractable proximal operators. We demonstrate the convergence of the algorithm and provide results on restoration tasks such as super-resolution and deblurring with non-uniform blur.
Path planning in the multi-robot system refers to calculating a set of actions for each robot, which will move each robot to its goal without conflicting with other robots. Lately, the research topic has received significant attention for its extensive applications, such as airport ground, drone swarms, and automatic warehouses. Despite these available research results, most of the existing investigations are concerned with the cases of robots with a fixed movement speed without considering uncertainty. Therefore, in this work, we study the problem of path-planning in the multi-robot automatic warehouse context, which considers the time-varying and uncertain robots' movement speed. Specifically, the path-planning module searches a path with as few conflicts as possible for a single agent by calculating traffic cost based on customarily distributed conflict probability and combining it with the classic A* algorithm. However, this probability-based method cannot eliminate all conflicts, and speed's uncertainty will constantly cause new conflicts. As a supplement, we propose the other two modules. The conflict detection and re-planning module chooses objects requiring re-planning paths from the agents involved in different types of conflicts periodically by our designed rules. Also, at each step, the scheduling module fills up the agent's preserved queue and decides who has a higher priority when the same element is assigned to two agents simultaneously. Finally, we compare the proposed algorithm with other algorithms from academia and industry, and the results show that the proposed method is validated as the best performance.
The emerging modular vehicle (MV) technology possesses the ability to physically connect/disconnect with each other and thus travel in platoon for less energy consumption. Moreover, a platoon of MVs can be regarded as a new bus-like platform with expanded on-board carrying capacity and provide larger service throughput according to the demand density. This innovation concept might solve the mismatch problems between the fixed vehicle capacity and the temporal-spatial variations of demand in current transportation system. To obtain the optimal assignments and routes for the operation of MVs, a mixed integer linear programming (MILP) model is formulated to minimize the weighted total cost of vehicle travel cost and passenger service time. The temporal and spatial synchronization of vehicle platoons and passenger en-route transfers are determined and optimized by the MILP model while constructing the paths. Heuristic algorithms based on large neighborhood search are developed to solve the modular dial-a-ride problem (MDARP) for practical scenarios. A set of small-scale synthetic numerical experiments are tested to evaluate the optimality gap and computation time between our proposed MILP model and heuristic algorithms. Large-scale experiments are conducted on the Anaheim network with 378 candidate join/split nodes to further explore the potentials and identify the ideal operation scenarios of MVs. The results show that the innovative MV technology can save up to 52.0% in vehicle travel cost, 35.6% in passenger service time, and 29.4% in total cost against existing on-demand mobility services. Results suggest that MVs best benefit from platooning by serving enclave pairs as a hub-and-spoke service.
Statistical inverse learning aims at recovering an unknown function $f$ from randomly scattered and possibly noisy point evaluations of another function $g$, connected to $f$ via an ill-posed mathematical model. In this paper we blend statistical inverse learning theory with the classical regularization strategy of applying finite-dimensional projections. Our key finding is that coupling the number of random point evaluations with the choice of projection dimension, one can derive probabilistic convergence rates for the reconstruction error of the maximum likelihood (ML) estimator. Convergence rates in expectation are derived with a ML estimator complemented with a norm-based cut-off operation. Moreover, we prove that the obtained rates are minimax optimal.
Despite the promising performance of existing frame-wise all-neural beamformers in the speech enhancement field, it remains unclear what the underlying mechanism exists. In this paper, we revisit the beamforming behavior from the beam-space dictionary perspective and formulate it into the learning and mixing of different beam-space components. Based on that, we propose an all-neural beamformer called TaylorBM to simulate Taylor's series expansion operation in which the 0th-order term serves as a spatial filter to conduct the beam mixing, and several high-order terms are tasked with residual noise cancellation for post-processing. The whole system is devised to work in an end-to-end manner. Experiments are conducted on the spatialized LibriSpeech corpus and results show that the proposed approach outperforms existing advanced baselines in terms of evaluation metrics.
In many unmanned aerial vehicle (UAV) applications for surveillance and data collection, it is not possible to reach all requested locations due to the given maximum flight time. Hence, the requested locations must be prioritized and the problem of selecting the most important locations is modeled as an Orienteering Problem (OP). To fully exploit the kinematic properties of the UAV in such scenarios, we combine the OP with the generation of time-optimal trajectories with bounds on velocity and acceleration. We define the resulting problem as the Kinematic Orienteering Problem (KOP) and propose an exact mixed-integer formulation together with a Large Neighborhood Search (LNS) as a heuristic solution method. We demonstrate the effectiveness of our approach based on Orienteering instances from the literature and benchmark against optimal solutions of the Dubins Orienteering Problem (DOP) as the state-of-the-art. Additionally, we show by simulation \color{black} that the resulting solutions can be tracked precisely by a modern MPC-based flight controller. Since we demonstrate that the state-of-the-art in generating time-optimal trajectories in multiple dimensions is not generally correct, we further present an improved analytical method for time-optimal trajectory generation.
This note complements the upcoming paper "One-Way Ticket to Las Vegas and the Quantum Adversary" by Belovs and Yolcu, to be presented at QIP 2023. I develop the ideas behind the adversary bound - universal algorithm duality therein in a different form. This form may be faster to understand for a general quantum information audience: It avoids defining the "unidirectional filtered $\gamma _{2}$-bound" and relating it to query algorithms explicitly. This proof is also more general because the lower bound (and universal query algorithm) apply to a class of optimal control problems rather than just query problems. That is in addition to the advantages to be discussed in Belovs-Yolcu, namely the more elementary algorithm and correctness proof that avoids phase estimation and spectral analysis, allows for limited treatment of noise, and removes another $\Theta(\log(1/\epsilon))$ factor from the runtime compared to the previous discrete-time algorithm.
A wide range of techniques have been proposed in recent years for designing neural networks for 3D data that are equivariant under rotation and translation of the input. Most approaches for equivariance under the Euclidean group $\mathrm{SE}(3)$ of rotations and translations fall within one of the two major categories. The first category consists of methods that use $\mathrm{SE}(3)$-convolution which generalizes classical $\mathbb{R}^3$-convolution on signals over $\mathrm{SE}(3)$. Alternatively, it is possible to use \textit{steerable convolution} which achieves $\mathrm{SE}(3)$-equivariance by imposing constraints on $\mathbb{R}^3$-convolution of tensor fields. It is known by specialists in the field that the two approaches are equivalent, with steerable convolution being the Fourier transform of $\mathrm{SE}(3)$ convolution. Unfortunately, these results are not widely known and moreover the exact relations between deep learning architectures built upon these two approaches have not been precisely described in the literature on equivariant deep learning. In this work we provide an in-depth analysis of both methods and their equivalence and relate the two constructions to multiview convolutional networks. Furthermore, we provide theoretical justifications of separability of $\mathrm{SE}(3)$ group convolution, which explain the applicability and success of some recent approaches. Finally, we express different methods using a single coherent formalism and provide explicit formulas that relate the kernels learned by different methods. In this way, our work helps to unify different previously-proposed techniques for achieving roto-translational equivariance, and helps to shed light on both the utility and precise differences between various alternatives. We also derive new TFN non-linearities from our equivalence principle and test them on practical benchmark datasets.
We propose quasi-stable coloring, an approximate version of stable coloring. Stable coloring, also called color refinement, is a well-studied technique in graph theory for classifying vertices, which can be used to build compact, lossless representations of graphs. However, its usefulness is limited due to its reliance on strict symmetries. Real data compresses very poorly using color refinement. We propose the first, to our knowledge, approximate color refinement scheme, which we call quasi-stable coloring. By using approximation, we alleviate the need for strict symmetry, and allow for a tradeoff between the degree of compression and the accuracy of the representation. We study three applications: Linear Programming, Max-Flow, and Betweenness Centrality, and provide theoretical evidence in each case that a quasi-stable coloring can lead to good approximations on the reduced graph. Next, we consider how to compute a maximal quasi-stable coloring: we prove that, in general, this problem is NP-hard, and propose a simple, yet effective algorithm based on heuristics. Finally, we evaluate experimentally the quasi-stable coloring technique on several real graphs and applications, comparing with prior approximation techniques. A reference implementation and the experiment code are available at //github.com/mkyl/QuasiStableColors.jl .
Neural algorithmic reasoning studies the problem of learning algorithms with neural networks, especially with graph architectures. A recent proposal, XLVIN, reaps the benefits of using a graph neural network that simulates the value iteration algorithm in deep reinforcement learning agents. It allows model-free planning without access to privileged information about the environment, which is usually unavailable. However, XLVIN only supports discrete action spaces, and is hence nontrivially applicable to most tasks of real-world interest. We expand XLVIN to continuous action spaces by discretization, and evaluate several selective expansion policies to deal with the large planning graphs. Our proposal, CNAP, demonstrates how neural algorithmic reasoning can make a measurable impact in higher-dimensional continuous control settings, such as MuJoCo, bringing gains in low-data settings and outperforming model-free baselines.
Learned classifiers should often possess certain invariance properties meant to encourage fairness, robustness, or out-of-distribution generalization. However, multiple recent works empirically demonstrate that common invariance-inducing regularizers are ineffective in the over-parameterized regime, in which classifiers perfectly fit (i.e. interpolate) the training data. This suggests that the phenomenon of ``benign overfitting," in which models generalize well despite interpolating, might not favorably extend to settings in which robustness or fairness are desirable. In this work we provide a theoretical justification for these observations. We prove that -- even in the simplest of settings -- any interpolating learning rule (with arbitrarily small margin) will not satisfy these invariance properties. We then propose and analyze an algorithm that -- in the same setting -- successfully learns a non-interpolating classifier that is provably invariant. We validate our theoretical observations on simulated data and the Waterbirds dataset.