亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Digitally synthesizing human motion is an inherently complex process, which can create obstacles in application areas such as virtual reality. We offer a new approach for predicting human motion, KP-RNN, a neural network which can integrate easily with existing image processing and generation pipelines. We utilize a new human motion dataset of performance art, Take The Lead, as well as the motion generation pipeline, the Everybody Dance Now system, to demonstrate the effectiveness of KP-RNN's motion predictions. We have found that our neural network can predict human dance movements effectively, which serves as a baseline result for future works using the Take The Lead dataset. Since KP-RNN can work alongside a system such as Everybody Dance Now, we argue that our approach could inspire new methods for rendering human avatar animation. This work also serves to benefit the visualization of performance art in digital platforms by utilizing accessible neural networks.

相關內容

We argue that interpretations of machine learning (ML) models or the model-building process can bee seen as a form of sensitivity analysis (SA), a general methodology used to explain complex systems in many fields such as environmental modeling, engineering, or economics. We address both researchers and practitioners, calling attention to the benefits of a unified SA-based view of explanations in ML and the necessity to fully credit related work. We bridge the gap between both fields by formally describing how (a) the ML process is a system suitable for SA, (b) how existing ML interpretation methods relate to this perspective, and (c) how other SA techniques could be applied to ML.

In reinforcement learning, the optimism in the face of uncertainty (OFU) is a mainstream principle for directing exploration towards less explored areas, characterized by higher uncertainty. However, in the presence of environmental stochasticity (noise), purely optimistic exploration may lead to excessive probing of high-noise areas, consequently impeding exploration efficiency. Hence, in exploring noisy environments, while optimism-driven exploration serves as a foundation, prudent attention to alleviating unnecessary over-exploration in high-noise areas becomes beneficial. In this work, we propose Optimistic Value Distribution Explorer (OVD-Explorer) to achieve a noise-aware optimistic exploration for continuous control. OVD-Explorer proposes a new measurement of the policy's exploration ability considering noise in optimistic perspectives, and leverages gradient ascent to drive exploration. Practically, OVD-Explorer can be easily integrated with continuous control RL algorithms. Extensive evaluations on the MuJoCo and GridChaos tasks demonstrate the superiority of OVD-Explorer in achieving noise-aware optimistic exploration.

The robot development process is divided into several stages, which create barriers to the exchange of information between these different stages. We advocate for an interactive lifecycle representation, extending from robot morphology design to learning, and introduce the role of robot description formats in facilitating information transfer throughout this pipeline. We analyzed the relationship between design and simulation, enabling us to employ robot process automation methods for transferring information from the design phase to the learning phase in simulation. As part of this effort, we have developed an open-source plugin called ACDC4Robot for Fusion 360, which automates this process and transforms Fusion 360 into a user-friendly graphical interface for creating and editing robot description formats. Additionally, we offer an out-of-the-box robot model library to streamline and reduce repetitive tasks. All codes are hosted open-source. (\url{//github.com/bionicdl-sustech/ACDC4Robot})

We introduce HuTuMotion, an innovative approach for generating natural human motions that navigates latent motion diffusion models by leveraging few-shot human feedback. Unlike existing approaches that sample latent variables from a standard normal prior distribution, our method adapts the prior distribution to better suit the characteristics of the data, as indicated by human feedback, thus enhancing the quality of motion generation. Furthermore, our findings reveal that utilizing few-shot feedback can yield performance levels on par with those attained through extensive human feedback. This discovery emphasizes the potential and efficiency of incorporating few-shot human-guided optimization within latent diffusion models for personalized and style-aware human motion generation applications. The experimental results show the significantly superior performance of our method over existing state-of-the-art approaches.

In reinforcement learning, the optimism in the face of uncertainty (OFU) is a mainstream principle for directing exploration towards less explored areas, characterized by higher uncertainty. However, in the presence of environmental stochasticity (noise), purely optimistic exploration may lead to excessive probing of high-noise areas, consequently impeding exploration efficiency. Hence, in exploring noisy environments, while optimism-driven exploration serves as a foundation, prudent attention to alleviating unnecessary over-exploration in high-noise areas becomes beneficial. In this work, we propose Optimistic Value Distribution Explorer (OVD-Explorer) to achieve a noise-aware optimistic exploration for continuous control. OVD-Explorer proposes a new measurement of the policy's exploration ability considering noise in optimistic perspectives, and leverages gradient ascent to drive exploration. Practically, OVD-Explorer can be easily integrated with continuous control RL algorithms. Extensive evaluations on the MuJoCo and GridChaos tasks demonstrate the superiority of OVD-Explorer in achieving noise-aware optimistic exploration.

Effectively explaining decisions of black-box machine learning models is critical to responsible deployment of AI systems that rely on them. Recognizing their importance, the field of explainable AI (XAI) provides several techniques to generate these explanations. Yet, there is relatively little emphasis on the user (the explainee) in this growing body of work and most XAI techniques generate "one-size-fits-all" explanations. To bridge this gap and achieve a step closer towards human-centered XAI, we present I-CEE, a framework that provides Image Classification Explanations tailored to User Expertise. Informed by existing work, I-CEE explains the decisions of image classification models by providing the user with an informative subset of training data (i.e., example images), corresponding local explanations, and model decisions. However, unlike prior work, I-CEE models the informativeness of the example images to depend on user expertise, resulting in different examples for different users. We posit that by tailoring the example set to user expertise, I-CEE can better facilitate users' understanding and simulatability of the model. To evaluate our approach, we conduct detailed experiments in both simulation and with human participants (N = 100) on multiple datasets. Experiments with simulated users show that I-CEE improves users' ability to accurately predict the model's decisions (simulatability) compared to baselines, providing promising preliminary results. Experiments with human participants demonstrate that our method significantly improves user simulatability accuracy, highlighting the importance of human-centered XAI

Solving partial differential equations (PDEs) by learning the solution operators has emerged as an attractive alternative to traditional numerical methods. However, implementing such architectures presents two main challenges: flexibility in handling irregular and arbitrary input and output formats and scalability to large discretizations. Most existing architectures are limited by their desired structure or infeasible to scale large inputs and outputs. To address these issues, we introduce an attention-based model called an inducing-point operator transformer (IPOT). Inspired by inducing points methods, IPOT is designed to handle any input function and output query while capturing global interactions in a computationally efficient way. By detaching the inputs/outputs discretizations from the processor with a smaller latent bottleneck, IPOT offers flexibility in processing arbitrary discretizations and scales linearly with the size of inputs/outputs. Our experimental results demonstrate that IPOT achieves strong performances with manageable computational complexity on an extensive range of PDE benchmarks and real-world weather forecasting scenarios, compared to state-of-the-art methods.

We consider the problem of inferring latent stochastic differential equations (SDEs) with a time and memory cost that scales independently with the amount of data, the total length of the time series, and the stiffness of the approximate differential equations. This is in stark contrast to typical methods for inferring latent differential equations which, despite their constant memory cost, have a time complexity that is heavily dependent on the stiffness of the approximate differential equation. We achieve this computational advancement by removing the need to solve differential equations when approximating gradients using a novel amortization strategy coupled with a recently derived reparametrization of expectations under linear SDEs. We show that, in practice, this allows us to achieve similar performance to methods based on adjoint sensitivities with more than an order of magnitude fewer evaluations of the model in training.

Using machine learning (ML) techniques to predict material properties is a crucial research topic. These properties depend on numerical data and semantic factors. Due to the limitations of small-sample datasets, existing methods typically adopt ML algorithms to regress numerical properties or transfer other pre-trained knowledge graphs (KGs) to the material. However, these methods cannot simultaneously handle semantic and numerical information. In this paper, we propose a numerical reasoning method for material KGs (NR-KG), which constructs a cross-modal KG using semantic nodes and numerical proxy nodes. It captures both types of information by projecting KG into a canonical KG and utilizes a graph neural network to predict material properties. In this process, a novel projection prediction loss is proposed to extract semantic features from numerical information. NR-KG facilitates end-to-end processing of cross-modal data, mining relationships and cross-modal information in small-sample datasets, and fully utilizes valuable experimental data to enhance material prediction. We further propose two new High-Entropy Alloys (HEA) property datasets with semantic descriptions. NR-KG outperforms state-of-the-art (SOTA) methods, achieving relative improvements of 25.9% and 16.1% on two material datasets. Besides, NR-KG surpasses SOTA methods on two public physical chemistry molecular datasets, showing improvements of 22.2% and 54.3%, highlighting its potential application and generalizability. We hope the proposed datasets, algorithms, and pre-trained models can facilitate the communities of KG and AI for materials.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

北京阿比特科技有限公司