亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of causal effect estimation with an unobserved confounder, where we observe a proxy variable that is associated with the confounder. Although Proxy causal learning (PCL) uses two proxy variables to recover the true causal effect, we show that a single proxy variable is sufficient for causal estimation if the outcome is generated deterministically, generalizing Control Outcome Calibration Approach (COCA). We propose two kernel-based methods for this setting: the first based on the two-stage regression approach, and the second based on a maximum moment restriction approach. We prove that both approaches can consistently estimate the causal effect, and we empirically demonstrate that we can successfully recover the causal effect on challenging synthetic benchmarks.

相關內容

The kinematic/robotic community is not only interested in measuring the closeness of a given robot configuration to its next singular one but also in a geometric meaningful index evaluating how far the robot design is away from being architecturally singular. Such an architecture singularity distance, which can be used by engineers as a criterion within the design process, is presented for a certain class of parallel manipulators of Stewart-Gough type; namely so-called linear pentapods. Geometrically the architecture singular designs are well-understood and can be subclassified into several cases, which allows to solve the optimization problem of computing the closest architecture singular design to a given linear pentapod with algorithms from numerical algebraic geometry.

Interpretability is essential in medical imaging to ensure that clinicians can comprehend and trust artificial intelligence models. In this paper, we propose a novel interpretable approach that combines attribute regularization of the latent space within the framework of an adversarially trained variational autoencoder. Comparative experiments on a cardiac MRI dataset demonstrate the ability of the proposed method to address blurry reconstruction issues of variational autoencoder methods and improve latent space interpretability. Additionally, our analysis of a downstream task reveals that the classification of cardiac disease using the regularized latent space heavily relies on attribute regularized dimensions, demonstrating great interpretability by connecting the used attributes for prediction with clinical observations.

We now have a wide range of proof assistants available for compositional reasoning in monoidal or higher categories which are free on some generating signature. However, none of these allow us to represent categorical operations such as products, equalizers, and similar logical techniques. Here we show how the foundational mathematical formalism of one such proof assistant can be generalized, replacing the conventional notion of string diagram as a geometrical entity living inside an n-cube with a posetal variant that allows exotic branching structure. We show that these generalized diagrams have richer behaviour with respect to categorical limits, and give an algorithm for computing limits in this setting, with a view towards future application in proof assistants.

Operational consistent query answering (CQA) is a recent framework for CQA based on revised definitions of repairs, which are built by applying a sequence of operations (e.g., fact deletions) starting from an inconsistent database until we reach a database that is consistent w.r.t. the given set of constraints. It has been recently shown that there are efficient approximations for computing the percentage of repairs, as well as of sequences of operations leading to repairs, that entail a given query when we focus on primary keys, conjunctive queries, and assuming the query is fixed (i.e., in data complexity). However, it has been left open whether such approximations exist when the query is part of the input (i.e., in combined complexity). We show that this is the case when we focus on self-join-free conjunctive queries of bounded generelized hypertreewidth. We also show that it is unlikely that efficient approximation schemes exist once we give up one of the adopted syntactic restrictions, i.e., self-join-freeness or bounding the generelized hypertreewidth. Towards the desired approximation schemes, we introduce a novel counting complexity class, called SpanTL, show that each problem in SpanTL admits an efficient approximation scheme by using a recent approximability result in the context of tree automata, and then place the problems of interest in SpanTL.

Abuse in its various forms, including physical, psychological, verbal, sexual, financial, and cultural, has a negative impact on mental health. However, there are limited studies on applying natural language processing (NLP) in this field in Vietnam. Therefore, we aim to contribute by building a human-annotated Vietnamese dataset for detecting abusive content in Vietnamese narrative texts. We sourced these texts from VnExpress, Vietnam's popular online newspaper, where readers often share stories containing abusive content. Identifying and categorizing abusive spans in these texts posed significant challenges during dataset creation, but it also motivated our research. We experimented with lightweight baseline models by freezing PhoBERT and XLM-RoBERTa and using their hidden states in a BiLSTM to assess the complexity of the dataset. According to our experimental results, PhoBERT outperforms other models in both labeled and unlabeled abusive span detection tasks. These results indicate that it has the potential for future improvements.

Invariant risk minimization (IRM) has recently emerged as a promising alternative for domain generalization. Nevertheless, the loss function is difficult to optimize for nonlinear classifiers and the original optimization objective could fail when pseudo-invariant features and geometric skews exist. Inspired by IRM, in this paper we propose a novel formulation for domain generalization, dubbed invariant information bottleneck (IIB). IIB aims at minimizing invariant risks for nonlinear classifiers and simultaneously mitigating the impact of pseudo-invariant features and geometric skews. Specifically, we first present a novel formulation for invariant causal prediction via mutual information. Then we adopt the variational formulation of the mutual information to develop a tractable loss function for nonlinear classifiers. To overcome the failure modes of IRM, we propose to minimize the mutual information between the inputs and the corresponding representations. IIB significantly outperforms IRM on synthetic datasets, where the pseudo-invariant features and geometric skews occur, showing the effectiveness of proposed formulation in overcoming failure modes of IRM. Furthermore, experiments on DomainBed show that IIB outperforms $13$ baselines by $0.9\%$ on average across $7$ real datasets.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司