亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep models have achieved significant process on single image super-resolution (SISR) tasks, in particular large models with large kernel ($3\times3$ or more). However, the heavy computational footprint of such models prevents their deployment in real-time, resource-constrained environments. Conversely, $1\times1$ convolutions bring substantial computational efficiency, but struggle with aggregating local spatial representations, an essential capability to SISR models. In response to this dichotomy, we propose to harmonize the merits of both $3\times3$ and $1\times1$ kernels, and exploit a great potential for lightweight SISR tasks. Specifically, we propose a simple yet effective fully $1\times1$ convolutional network, named Shift-Conv-based Network (SCNet). By incorporating a parameter-free spatial-shift operation, it equips the fully $1\times1$ convolutional network with powerful representation capability while impressive computational efficiency. Extensive experiments demonstrate that SCNets, despite its fully $1\times1$ convolutional structure, consistently matches or even surpasses the performance of existing lightweight SR models that employ regular convolutions. The code and pre-trained models can be found at //github.com/Aitical/SCNet.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡(luo)會議。 Publisher:IFIP。 SIT:

We introduce a 3D-aware diffusion model, ZeroNVS, for single-image novel view synthesis for in-the-wild scenes. While existing methods are designed for single objects with masked backgrounds, we propose new techniques to address challenges introduced by in-the-wild multi-object scenes with complex backgrounds. Specifically, we train a generative prior on a mixture of data sources that capture object-centric, indoor, and outdoor scenes. To address issues from data mixture such as depth-scale ambiguity, we propose a novel camera conditioning parameterization and normalization scheme. Further, we observe that Score Distillation Sampling (SDS) tends to truncate the distribution of complex backgrounds during distillation of 360-degree scenes, and propose "SDS anchoring" to improve the diversity of synthesized novel views. Our model sets a new state-of-the-art result in LPIPS on the DTU dataset in the zero-shot setting, even outperforming methods specifically trained on DTU. We further adapt the challenging Mip-NeRF 360 dataset as a new benchmark for single-image novel view synthesis, and demonstrate strong performance in this setting. Our code and data are at //kylesargent.github.io/zeronvs/

A key challenge of 360$^\circ$ VR video streaming is ensuring high quality with limited network bandwidth. Currently, most studies focus on tile-based adaptive bitrate streaming to reduce bandwidth consumption, where resources in network nodes are not fully utilized. This article proposes a tile-weighted rate-distortion (TWRD) packet scheduling optimization system to reduce data volume and improve video quality. A multimodal spatial-temporal attention transformer is proposed to predict viewpoint with probability that is used to dynamically weight tiles and corresponding packets. The packet scheduling problem of determining which packets should be dropped is formulated as an optimization problem solved by a dynamic programming solution. Experiment results demonstrate the proposed method outperforms the existing methods under various conditions.

With the success of deep neural networks (NNs) in a variety of domains, the computational and storage requirements for training and deploying large NNs have become a bottleneck for further improvements. Sparsification has consequently emerged as a leading approach to tackle these issues. In this work, we consider a simple yet effective approach to sparsification, based on the Bridge, or $L_p$ regularization during training. We introduce a novel weight decay scheme, which generalizes the standard $L_2$ weight decay to any $p$ norm. We show that this scheme is compatible with adaptive optimizers, and avoids the gradient divergence associated with $0<p<1$ norms. We empirically demonstrate that it leads to highly sparse networks, while maintaining generalization performance comparable to standard $L_2$ regularization.

The success of image generative models has enabled us to build methods that can edit images based on text or other user input. However, these methods are bespoke, imprecise, require additional information, or are limited to only 2D image edits. We present GeoDiffuser, a zero-shot optimization-based method that unifies common 2D and 3D image-based object editing capabilities into a single method. Our key insight is to view image editing operations as geometric transformations. We show that these transformations can be directly incorporated into the attention layers in diffusion models to implicitly perform editing operations. Our training-free optimization method uses an objective function that seeks to preserve object style but generate plausible images, for instance with accurate lighting and shadows. It also inpaints disoccluded parts of the image where the object was originally located. Given a natural image and user input, we segment the foreground object using SAM and estimate a corresponding transform which is used by our optimization approach for editing. GeoDiffuser can perform common 2D and 3D edits like object translation, 3D rotation, and removal. We present quantitative results, including a perceptual study, that shows how our approach is better than existing methods. Visit //ivl.cs.brown.edu/research/geodiffuser.html for more information.

Driven by powerful image diffusion models, recent research has achieved the automatic creation of 3D objects from textual or visual guidance. By performing score distillation sampling (SDS) iteratively across different views, these methods succeed in lifting 2D generative prior to the 3D space. However, such a 2D generative image prior bakes the effect of illumination and shadow into the texture. As a result, material maps optimized by SDS inevitably involve spurious correlated components. The absence of precise material definition makes it infeasible to relight the generated assets reasonably in novel scenes, which limits their application in downstream scenarios. In contrast, humans can effortlessly circumvent this ambiguity by deducing the material of the object from its appearance and semantics. Motivated by this insight, we propose MaterialSeg3D, a 3D asset material generation framework to infer underlying material from the 2D semantic prior. Based on such a prior model, we devise a mechanism to parse material in 3D space. We maintain a UV stack, each map of which is unprojected from a specific viewpoint. After traversing all viewpoints, we fuse the stack through a weighted voting scheme and then employ region unification to ensure the coherence of the object parts. To fuel the learning of semantics prior, we collect a material dataset, named Materialized Individual Objects (MIO), which features abundant images, diverse categories, and accurate annotations. Extensive quantitative and qualitative experiments demonstrate the effectiveness of our method.

Large-scale text-to-image diffusion models have been a ground-breaking development in generating convincing images following an input text prompt. The goal of image editing research is to give users control over the generated images by modifying the text prompt. Current image editing techniques predominantly hinge on DDIM inversion as a prevalent practice rooted in Latent Diffusion Models (LDM). However, the large pretrained T2I models working on the latent space suffer from losing details due to the first compression stage with an autoencoder mechanism. Instead, other mainstream T2I pipeline working on the pixel level, such as Imagen and DeepFloyd-IF, circumvents the above problem. They are commonly composed of multiple stages, typically starting with a text-to-image stage and followed by several super-resolution stages. In this pipeline, the DDIM inversion fails to find the initial noise and generate the original image given that the super-resolution diffusion models are not compatible with the DDIM technique. According to our experimental findings, iteratively concatenating the noisy image as the condition is the root of this problem. Based on this observation, we develop an iterative inversion (IterInv) technique for this category of T2I models and verify IterInv with the open-source DeepFloyd-IF model.Specifically, IterInv employ NTI as the inversion and reconstruction of low-resolution image generation. In stages 2 and 3, we update the latent variance at each timestep to find the deterministic inversion trace and promote the reconstruction process. By combining our method with a popular image editing method, we prove the application prospects of IterInv. The code will be released upon acceptance. The code is available at \url{//github.com/Tchuanm/IterInv.git}.

Foundation models, such as large language models, have demonstrated success in addressing various language and image processing tasks. In this work, we introduce a multi-modal foundation model for scientific problems, named PROSE-PDE. Our model, designed for bi-modality to bi-modality learning, is a multi-operator learning approach which can predict future states of spatiotemporal systems while concurrently learning the underlying governing equations of the physical system. Specifically, we focus on multi-operator learning by training distinct one-dimensional time-dependent nonlinear constant coefficient partial differential equations, with potential applications to many physical applications including physics, geology, and biology. More importantly, we provide three extrapolation studies to demonstrate that PROSE-PDE can generalize physical features through the robust training of multiple operators and that the proposed model can extrapolate to predict PDE solutions whose models or data were unseen during the training. Furthermore, we show through systematic numerical experiments that the utilization of the symbolic modality in our model effectively resolves the well-posedness problems with training multiple operators and thus enhances our model's predictive capabilities.

We consider the problem of estimating probability density functions based on sample data, using a finite mixture of densities from some component class. To this end, we introduce the $h$-lifted Kullback--Leibler (KL) divergence as a generalization of the standard KL divergence and a criterion for conducting risk minimization. Under a compact support assumption, we prove an $\mc{O}(1/{\sqrt{n}})$ bound on the expected estimation error when using the $h$-lifted KL divergence, which extends the results of Rakhlin et al. (2005, ESAIM: Probability and Statistics, Vol. 9) and Li and Barron (1999, Advances in Neural Information ProcessingSystems, Vol. 12) to permit the risk bounding of density functions that are not strictly positive. We develop a procedure for the computation of the corresponding maximum $h$-lifted likelihood estimators ($h$-MLLEs) using the Majorization-Maximization framework and provide experimental results in support of our theoretical bounds.

Foundation models, such as large language models, have demonstrated success in addressing various language and image processing tasks. In this work, we introduce a multi-modal foundation model for scientific problems, named PROSE-PDE. Our model, designed for bi-modality to bi-modality learning, is a multi-operator learning approach which can predict future states of spatiotemporal systems while concurrently learning the underlying governing equations of the physical system. Specifically, we focus on multi-operator learning by training distinct one-dimensional time-dependent nonlinear constant coefficient partial differential equations, with potential applications to many physical applications including physics, geology, and biology. More importantly, we provide three extrapolation studies to demonstrate that PROSE-PDE can generalize physical features through the robust training of multiple operators and that the proposed model can extrapolate to predict PDE solutions whose models or data were unseen during the training. Furthermore, we show through systematic numerical experiments that the utilization of the symbolic modality in our model effectively resolves the well-posedness problems with training multiple operators and thus enhances our model's predictive capabilities.

Recently, significant progress has been made in the study of methods for 3D reconstruction from multiple images using implicit neural representations, exemplified by the neural radiance field (NeRF) method. Such methods, which are based on volume rendering, can model various light phenomena, and various extended methods have been proposed to accommodate different scenes and situations. However, when handling scenes with multiple glass objects, e.g., objects in a glass showcase, modeling the target scene accurately has been challenging due to the presence of multiple reflection and refraction effects. Thus, this paper proposes a NeRF-based modeling method for scenes containing a glass case. In the proposed method, refraction and reflection are modeled using elements that are dependent and independent of the viewer's perspective. This approach allows us to estimate the surfaces where refraction occurs, i.e., glass surfaces, and enables the separation and modeling of both direct and reflected light components. The proposed method requires predetermined camera poses, but accurately estimating these poses in scenes with glass objects is difficult. Therefore, we used a robotic arm with an attached camera to acquire images with known poses. Compared to existing methods, the proposed method enables more accurate modeling of both glass refraction and the overall scene.

北京阿比特科技有限公司