The conventional recipe for Automatic Speech Recognition (ASR) models is to 1) train multiple checkpoints on a training set while relying on a validation set to prevent overfitting using early stopping and 2) average several last checkpoints or that of the lowest validation losses to obtain the final model. In this paper, we rethink and update the early stopping and checkpoint averaging from the perspective of the bias-variance tradeoff. Theoretically, the bias and variance represent the fitness and variability of a model and the tradeoff of them determines the overall generalization error. But, it's impractical to evaluate them precisely. As an alternative, we take the training loss and validation loss as proxies of bias and variance and guide the early stopping and checkpoint averaging using their tradeoff, namely an Approximated Bias-Variance Tradeoff (ApproBiVT). When evaluating with advanced ASR models, our recipe provides 2.5%-3.7% and 3.1%-4.6% CER reduction on the AISHELL-1 and AISHELL-2, respectively.
The application of Unbiased Learning to Rank (ULTR) is widespread in modern systems for training unbiased ranking models from biased click logs. The key is to explicitly model a generation process for user behavior and fit click data based on examination hypothesis. Previous research found empirically that the true latent relevance can be recovered in most cases as long as the clicks are perfectly fitted. However, we demonstrate that this is not always achievable, resulting in a significant reduction in ranking performance. In this work, we aim to answer if or when the true relevance can be recovered from click data, which is a foundation issue for ULTR field. We first define a ranking model as identifiable if it can recover the true relevance up to a scaling transformation, which is enough for pairwise ranking objective. Then we explore an equivalent condition for identifiability that can be novely expressed as a graph connectivity test problem: if and only if a graph (namely identifiability graph, or IG) constructed on the underlying structure of the dataset is connected, we can guarantee that the relevance can be correctly recovered. When the IG is not connected, there may be bad cases leading to poor ranking performance. To address this issue, we propose two methods, namely node intervention and node merging, to modify the dataset and restore connectivity of the IG. Empirical results obtained on a simulation dataset and two LTR benchmark datasets confirm the validity of our proposed theorems and show the effectiveness of our methods in mitigating data bias when the relevance model is unidentifiable.
Cross-silo federated learning offers a promising solution to collaboratively train robust and generalized AI models without compromising the privacy of local datasets, e.g., healthcare, financial, as well as scientific projects that lack a centralized data facility. Nonetheless, because of the disparity of computing resources among different clients (i.e., device heterogeneity), synchronous federated learning algorithms suffer from degraded efficiency when waiting for straggler clients. Similarly, asynchronous federated learning algorithms experience degradation in the convergence rate and final model accuracy on non-identically and independently distributed (non-IID) heterogeneous datasets due to stale local models and client drift. To address these limitations in cross-silo federated learning with heterogeneous clients and data, we propose FedCompass, an innovative semi-asynchronous federated learning algorithm with a computing power aware scheduler on the server side, which adaptively assigns varying amounts of training tasks to different clients using the knowledge of the computing power of individual clients. FedCompass ensures that multiple locally trained models from clients are received almost simultaneously as a group for aggregation, effectively reducing the staleness of local models. At the same time, the overall training process remains asynchronous, eliminating prolonged waiting periods from straggler clients. Using diverse non-IID heterogeneous distributed datasets, we demonstrate that FedCompass achieves faster convergence and higher accuracy than other asynchronous algorithms while remaining more efficient than synchronous algorithms when performing federated learning on heterogeneous clients.
This paper considers contrastive training for cross-modal 0-shot transfer wherein a pre-trained model in one modality is used for representation learning in another domain using pairwise data. The learnt models in the latter domain can then be used for a diverse set of tasks in a zero-shot way, similar to ``Contrastive Language-Image Pre-training (CLIP)'' and ``Locked-image Tuning (LiT)'' that have recently gained considerable attention. Most existing works for cross-modal representation alignment (including CLIP and LiT) use the standard contrastive training objective, which employs sets of positive and negative examples to align similar and repel dissimilar training data samples. However, similarity amongst training examples has a more continuous nature, thus calling for a more `non-binary' treatment. To address this, we propose a novel loss function called Continuously Weighted Contrastive Loss (CWCL) that employs a continuous measure of similarity. With CWCL, we seek to align the embedding space of one modality with another. Owing to the continuous nature of similarity in the proposed loss function, these models outperform existing methods for 0-shot transfer across multiple models, datasets and modalities. Particularly, we consider the modality pairs of image-text and speech-text and our models achieve 5-8% (absolute) improvement over previous state-of-the-art methods in 0-shot image classification and 20-30% (absolute) improvement in 0-shot speech-to-intent classification and keyword classification.
This work presents an easy-to-use regularizer for GAN training, which helps explicitly link some axes of the latent space to a set of pixels in the synthesized image. Establishing such a connection facilitates a more convenient local control of GAN generation, where users can alter the image content only within a spatial area simply by partially resampling the latent code. Experimental results confirm four appealing properties of our regularizer, which we call LinkGAN. (1) The latent-pixel linkage is applicable to either a fixed region (\textit{i.e.}, same for all instances) or a particular semantic category (i.e., varying across instances), like the sky. (2) Two or multiple regions can be independently linked to different latent axes, which further supports joint control. (3) Our regularizer can improve the spatial controllability of both 2D and 3D-aware GAN models, barely sacrificing the synthesis performance. (4) The models trained with our regularizer are compatible with GAN inversion techniques and maintain editability on real images.
Participant selection (PS) helps to accelerate federated learning (FL) convergence, which is essential for the practical deployment of FL over mobile devices. While most existing PS approaches focus on improving training accuracy and efficiency rather than residual energy of mobile devices, which fundamentally determines whether the selected devices can participate. Meanwhile, the impacts of mobile devices' heterogeneous wireless transmission rates on PS and FL training efficiency are largely ignored. Moreover, PS causes the staleness issue. Prior research exploits isolated functions to force long-neglected devices to participate, which is decoupled from original PS designs. In this paper, we propose a residual energy and wireless aware PS design for efficient FL training over mobile devices (REWAFL). REW AFL introduces a novel PS utility function that jointly considers global FL training utilities and local energy utility, which integrates energy consumption and residual battery energy of candidate mobile devices. Under the proposed PS utility function framework, REW AFL further presents a residual energy and wireless aware local computing policy. Besides, REWAFL buries the staleness solution into its utility function and local computing policy. The experimental results show that REW AFL is effective in improving training accuracy and efficiency, while avoiding "flat battery" of mobile devices.
Large-scale pre-trained models (PTMs) such as BERT and GPT have achieved great success in diverse fields. The typical paradigm is to pre-train a big deep learning model on large-scale data sets, and then fine-tune the model on small task-specific data sets for downstream tasks. Although PTMs have rapidly progressed with wide real-world applications, they also pose significant risks of potential attacks. Existing backdoor attacks or data poisoning methods often build up the assumption that the attacker invades the computers of victims or accesses the target data, which is challenging in real-world scenarios. In this paper, we propose a novel framework for an invisible attack on PTMs with enhanced MD5 collision. The key idea is to generate two equal-size models with the same MD5 checksum by leveraging the MD5 chosen-prefix collision. Afterwards, the two ``same" models will be deployed on public websites to induce victims to download the poisoned model. Unlike conventional attacks on deep learning models, this new attack is flexible, covert, and model-independent. Additionally, we propose a simple defensive strategy for recognizing the MD5 chosen-prefix collision and provide a theoretical justification for its feasibility. We extensively validate the effectiveness and stealthiness of our proposed attack and defensive method on different models and data sets.
The traditional machine learning models to solve optimal power flow (OPF) are mostly trained for a given power network and lack generalizability to today's power networks with varying topologies and growing plug-and-play distributed energy resources (DERs). In this paper, we propose DeepOPF-U, which uses one unified deep neural network (DNN) to solve alternating-current (AC) OPF problems in different power networks, including a set of power networks that is successively expanding. Specifically, we design elastic input and output layers for the vectors of given loads and OPF solutions with varying lengths in different networks. The proposed method, using a single unified DNN, can deal with different and growing numbers of buses, lines, loads, and DERs. Simulations of IEEE 57/118/300-bus test systems and a network growing from 73 to 118 buses verify the improved performance of DeepOPF-U compared to existing DNN-based solution methods.
Prompt engineering is a powerful tool used to enhance the performance of pre-trained models on downstream tasks. For example, providing the prompt "Let's think step by step" improved GPT-3's reasoning accuracy to 63% on MutiArith while prompting "a photo of" filled with a class name enables CLIP to achieve $80$\% zero-shot accuracy on ImageNet. While previous research has explored prompt learning for the visual modality, analyzing what constitutes a good visual prompt specifically for image recognition is limited. In addition, existing visual prompt tuning methods' generalization ability is worse than text-only prompting tuning. This paper explores our key insight: synthetic text images are good visual prompts for vision-language models! To achieve that, we propose our LoGoPrompt, which reformulates the classification objective to the visual prompt selection and addresses the chicken-and-egg challenge of first adding synthetic text images as class-wise visual prompts or predicting the class first. Without any trainable visual prompt parameters, experimental results on 16 datasets demonstrate that our method consistently outperforms state-of-the-art methods in few-shot learning, base-to-new generalization, and domain generalization.
We propose UniViLM: a Unified Video and Language pre-training Model for multimodal understanding and generation. Motivated by the recent success of BERT based pre-training technique for NLP and image-language tasks, VideoBERT and CBT are proposed to exploit BERT model for video and language pre-training using narrated instructional videos. Different from their works which only pre-train understanding task, we propose a unified video-language pre-training model for both understanding and generation tasks. Our model comprises of 4 components including two single-modal encoders, a cross encoder and a decoder with the Transformer backbone. We first pre-train our model to learn the universal representation for both video and language on a large instructional video dataset. Then we fine-tune the model on two multimodal tasks including understanding task (text-based video retrieval) and generation task (multimodal video captioning). Our extensive experiments show that our method can improve the performance of both understanding and generation tasks and achieves the state-of-the art results.
State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.