亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Topological Data Analysis (TDA) offers a suite of computational tools that provide quantified shape features in high dimensional data that can be used by modern statistical and predictive machine learning (ML) models. In particular, persistent homology (PH) takes in data (e.g., point clouds, images, time series) and derives compact representations of latent topological structures, known as persistence diagrams (PDs). Because PDs enjoy inherent noise tolerance, are interpretable and provide a solid basis for data analysis, and can be made compatible with the expansive set of well-established ML model architectures, PH has been widely adopted for model development including on sensitive data, such as genomic, cancer, sensor network, and financial data. Thus, TDA should be incorporated into secure end-to-end data analysis pipelines. In this paper, we take the first step to address this challenge and develop a version of the fundamental algorithm to compute PH on encrypted data using homomorphic encryption (HE).

相關內容

Sentence embeddings enable us to capture the semantic similarity of short texts. Most sentence embedding models are trained for general semantic textual similarity tasks. Therefore, to use sentence embeddings in a particular domain, the model must be adapted to it in order to achieve good results. Usually, this is done by fine-tuning the entire sentence embedding model for the domain of interest. While this approach yields state-of-the-art results, all of the model's weights are updated during fine-tuning, making this method resource-intensive. Therefore, instead of fine-tuning entire sentence embedding models for each target domain individually, we propose to train lightweight adapters. These domain-specific adapters do not require fine-tuning all underlying sentence embedding model parameters. Instead, we only train a small number of additional parameters while keeping the weights of the underlying sentence embedding model fixed. Training domain-specific adapters allows always using the same base model and only exchanging the domain-specific adapters to adapt sentence embeddings to a specific domain. We show that using adapters for parameter-efficient domain adaptation of sentence embeddings yields competitive performance within 1% of a domain-adapted, entirely fine-tuned sentence embedding model while only training approximately 3.6% of the parameters.

Unsupervised Domain Adaptive Object Detection (UDA-OD) uses unlabelled data to improve the reliability of robotic vision systems in open-world environments. Previous approaches to UDA-OD based on self-training have been effective in overcoming changes in the general appearance of images. However, shifts in a robot's deployment environment can also impact the likelihood that different objects will occur, termed class distribution shift. Motivated by this, we propose a framework for explicitly addressing class distribution shift to improve pseudo-label reliability in self-training. Our approach uses the domain invariance and contextual understanding of a pre-trained joint vision and language model to predict the class distribution of unlabelled data. By aligning the class distribution of pseudo-labels with this prediction, we provide weak supervision of pseudo-label accuracy. To further account for low quality pseudo-labels early in self-training, we propose an approach to dynamically adjust the number of pseudo-labels per image based on model confidence. Our method outperforms state-of-the-art approaches on several benchmarks, including a 4.7 mAP improvement when facing challenging class distribution shift.

This paper proposes a system capable of recognizing a speaker's utterance-level emotion through multimodal cues in a video. The system seamlessly integrates multiple AI models to first extract and pre-process multimodal information from the raw video input. Next, an end-to-end MER model sequentially predicts the speaker's emotions at the utterance level. Additionally, users can interactively demonstrate the system through the implemented interface.

Image Signal Processors (ISPs) play important roles in image recognition tasks as well as in the perceptual quality of captured images. In most cases, experts make a lot of effort to manually tune many parameters of ISPs, but the parameters are sub-optimal. In the literature, two types of techniques have been actively studied: a machine learning-based parameter tuning technique and a DNN-based ISP technique. The former is lightweight but lacks expressive power. The latter has expressive power, but the computational cost is too heavy on edge devices. To solve these problems, we propose "DynamicISP," which consists of multiple classical ISP functions and dynamically controls the parameters of each frame according to the recognition result of the previous frame. We show our method successfully controls the parameters of multiple ISP functions and achieves state-of-the-art accuracy with low computational cost in single and multi-category object detection tasks.

Stereoscopic image quality assessment (SIQA) plays a crucial role in evaluating and improving the visual experience of 3D content. Existing binocular properties and attention-based methods for SIQA have achieved promising performance. However, these bottom-up approaches are inadequate in exploiting the inherent characteristics of the human visual system (HVS). This paper presents a novel network for SIQA via stereo attention, employing a top-down perspective to guide the quality assessment process. Our proposed method realizes the guidance from high-level binocular signals down to low-level monocular signals, while the binocular and monocular information can be calibrated progressively throughout the processing pipeline. We design a generalized Stereo AttenTion (SAT) block to implement the top-down philosophy in stereo perception. This block utilizes the fusion-generated attention map as a high-level binocular modulator, influencing the representation of two low-level monocular features. Additionally, we introduce an Energy Coefficient (EC) to account for recent findings indicating that binocular responses in the primate primary visual cortex are less than the sum of monocular responses. The adaptive EC can tune the magnitude of binocular response flexibly, thus enhancing the formation of robust binocular features within our framework. To extract the most discriminative quality information from the summation and subtraction of the two branches of monocular features, we utilize a dual-pooling strategy that applies min-pooling and max-pooling operations to the respective branches. Experimental results highlight the superiority of our top-down method in simulating the property of visual perception and advancing the state-of-the-art in the SIQA field. The code of this work is available at //github.com/Fanning-Zhang/SATNet.

Membership Inference Attack (MIA) identifies whether a record exists in a machine learning model's training set by querying the model. MIAs on the classic classification models have been well-studied, and recent works have started to explore how to transplant MIA onto generative models. Our investigation indicates that existing MIAs designed for generative models mainly depend on the overfitting in target models. However, overfitting can be avoided by employing various regularization techniques, whereas existing MIAs demonstrate poor performance in practice. Unlike overfitting, memorization is essential for deep learning models to attain optimal performance, making it a more prevalent phenomenon. Memorization in generative models leads to an increasing trend in the probability distribution of generating records around the member record. Therefore, we propose a Probabilistic Fluctuation Assessing Membership Inference Attack (PFAMI), a black-box MIA that infers memberships by detecting these trends via analyzing the overall probabilistic fluctuations around given records. We conduct extensive experiments across multiple generative models and datasets, which demonstrate PFAMI can improve the attack success rate (ASR) by about 27.9% when compared with the best baseline.

Lyric translation plays a pivotal role in amplifying the global resonance of music, bridging cultural divides, and fostering universal connections. Translating lyrics, unlike conventional translation tasks, requires a delicate balance between singability and semantics. In this paper, we present a computational framework for the quantitative evaluation of singable lyric translation, which seamlessly integrates musical, linguistic, and cultural dimensions of lyrics. Our comprehensive framework consists of four metrics that measure syllable count distance, phoneme repetition similarity, musical structure distance, and semantic similarity. To substantiate the efficacy of our framework, we collected a singable lyrics dataset, which precisely aligns English, Japanese, and Korean lyrics on a line-by-line and section-by-section basis, and conducted a comparative analysis between singable and non-singable lyrics. Our multidisciplinary approach provides insights into the key components that underlie the art of lyric translation and establishes a solid groundwork for the future of computational lyric translation assessment.

With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

北京阿比特科技有限公司