亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop a functional proportional hazards mixture cure (FPHMC) model with scalar and functional covariates measured at the baseline. The mixture cure model, useful in studying populations with a cure fraction of a particular event of interest is extended to functional data. We employ the EM algorithm and develop a semiparametric penalized spline-based approach to estimate the dynamic functional coefficients of the incidence and the latency part. The proposed method is computationally efficient and simultaneously incorporates smoothness in the estimated functional coefficients via roughness penalty. Simulation studies illustrate a satisfactory performance of the proposed method in accurately estimating the model parameters and the baseline survival function. Finally, the clinical potential of the model is demonstrated in two real data examples that incorporate rich high-dimensional biomedical signals as functional covariates measured at the baseline and constitute novel domains to apply cure survival models in contemporary medical situations. In particular, we analyze i) minute-by-minute physical activity data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014 to study the association between diurnal patterns of physical activity at baseline and 9-year mortality while adjusting for other biological factors; ii) the impact of daily functional measures of disease severity collected in the intensive care unit on post ICU recovery and mortality event. Software implementation and illustration of the proposed estimation method is provided in R.

相關內容

Spatially correlated data with an excess of zeros, usually referred to as zero-inflated spatial data, arise in many disciplines. Examples include count data, for instance, abundance (or lack thereof) of animal species and disease counts, as well as semi-continuous data like observed precipitation. Spatial two-part models are a flexible class of models for such data. Fitting two-part models can be computationally expensive for large data due to high-dimensional dependent latent variables, costly matrix operations, and slow mixing Markov chains. We describe a flexible, computationally efficient approach for modeling large zero-inflated spatial data using the projection-based intrinsic conditional autoregression (PICAR) framework. We study our approach, which we call PICAR-Z, through extensive simulation studies and two environmental data sets. Our results suggest that PICAR-Z provides accurate predictions while remaining computationally efficient. An important goal of our work is to allow researchers who are not experts in computation to easily build computationally efficient extensions to zero-inflated spatial models; this also allows for a more thorough exploration of modeling choices in two-part models than was previously possible. We show that PICAR-Z is easy to implement and extend in popular probabilistic programming languages such as nimble and stan.

We study practical data characteristics underlying federated learning, where non-i.i.d. data from clients have sparse features, and a certain client's local data normally involves only a small part of the full model, called a submodel. Due to data sparsity, the classical federated averaging (FedAvg) algorithm or its variants will be severely slowed down, because when updating the global model, each client's zero update of the full model excluding its submodel is inaccurately aggregated. Therefore, we propose federated submodel averaging (FedSubAvg), ensuring that the expectation of the global update of each model parameter is equal to the average of the local updates of the clients who involve it. We theoretically proved the convergence rate of FedSubAvg by deriving an upper bound under a new metric called the element-wise gradient norm. In particular, this new metric can characterize the convergence of federated optimization over sparse data, while the conventional metric of squared gradient norm used in FedAvg and its variants cannot. We extensively evaluated FedSubAvg over both public and industrial datasets. The evaluation results demonstrate that FedSubAvg significantly outperforms FedAvg and its variants.

While extensive work has been done to correct for biases due to measurement error in scalar-valued covariates prone to errors in generalized linear regression models, limited work has been done to address biases associated with functional covariates prone to errors or the combination of scalar and functional covariates prone to errors in these models. We propose Simulation Extrapolation (SIMEX) and Regression Calibration approaches to correct measurement errors associated with a mixture of functional and scalar covariates prone to classical measurement errors in generalized functional linear regression. The simulation extrapolation method is developed to handle the functional and scalar covariates prone to errors. We also develop methods based on regression calibration extended to our current measurement error settings. Extensive simulation studies are conducted to assess the finite sample performance of our developed methods. The methods are applied to the 2011-2014 cycles of the National Health and Examination Survey data to assess the relationship between physical activity and total caloric intake with type 2 diabetes among community-dwelling adults living in the United States. We treat the device-based measures of physical activity as error-prone functional covariates prone to complex arbitrary heteroscedastic errors, while the total caloric intake is considered a scalar-valued covariate prone to error. We also examine the characteristics of observed measurement errors in device-based physical activity by important demographic subgroups including age, sex, and race.

Sensitivity analysis for the unconfoundedness assumption is a crucial component of observational studies. The marginal sensitivity model has become increasingly popular for this purpose due to its interpretability and mathematical properties. As the basis of $L^\infty$-sensitivity analysis, it assumes the logit difference between the observed and full data propensity scores is uniformly bounded. In this article, we introduce a new $L^2$-sensitivity analysis framework which is flexible, sharp and efficient. We allow the strength of unmeasured confounding to vary across units and only require it to be bounded marginally for partial identification. We derive analytical solutions to the optimization problems under our $L^2$-models, which can be used to obtain sharp bounds for the average treatment effect (ATE). We derive efficient influence functions and use them to develop efficient one-step estimators in both analyses. We show that multiplier bootstrap can be applied to construct simultaneous confidence bands for our ATE bounds. In a real-data study, we demonstrate that $L^2$-analysis relaxes the interpretation of $L^\infty$-analysis and provides a much more reliable calibration process using observed covariates. Finally, we provide an extension of our theoretical results to the conditional average treatment effect (CATE).

We explore the possibilities of applying structure-preserving numerical methods to a plasma hybrid model with kinetic ions and mass-less fluid electrons satisfying the quasi-neutrality relation. The numerical schemes are derived by finite element methods in the framework of finite element exterior calculus (FEEC) for field variables, particle-in-cell (PIC) methods for the Vlasov equation, and splitting methods in time based on an anti-symmetric bracket proposed. Conservation properties of energy, quasi-neutrality relation, positivity of density, and divergence-free property of the magnetic field are given irrespective of the used resolution and metric. Local quasi-interpolation is used for dealing with the current terms in order to make the proposed methods more efficient. The implementation has been done in the framework of the Python package STRUPHY [1], and has been verified by extensive numerical experiments.

In this paper, we propose double machine learning procedures to estimate genetic relatedness between two traits in a model-free framework. Most existing methods require specifying certain parametric models involving the traits and genetic variants. However, the bias due to model mis-specification may yield misleading statistical results. Moreover, the semiparametric efficient bounds for estimators of genetic relatedness are still lacking. In this paper, we develop semi-parametric efficient and model-free estimators and construct valid confidence intervals for two important measures of genetic relatedness: genetic covariance and genetic correlation, allowing both continuous and discrete responses. Based on the derived efficient influence functions of genetic relatedness, we propose a consistent estimator of the genetic covariance as long as one of genetic values is consistently estimated. The data of two traits may be collected from the same group or different groups of individuals. Various numerical studies are performed to illustrate our introduced procedures. We also apply proposed procedures to analyze Carworth Farms White mice genome-wide association study data.

Privacy protection methods, such as differentially private mechanisms, introduce noise into resulting statistics which often results in complex and intractable sampling distributions. In this paper, we propose to use the simulation-based "repro sample" approach to produce statistically valid confidence intervals and hypothesis tests based on privatized statistics. We show that this methodology is applicable to a wide variety of private inference problems, appropriately accounts for biases introduced by privacy mechanisms (such as by clamping), and improves over other state-of-the-art inference methods such as the parametric bootstrap in terms of the coverage and type I error of the private inference. We also develop significant improvements and extensions for the repro sample methodology for general models (not necessarily related to privacy), including 1) modifying the procedure to ensure guaranteed coverage and type I errors, even accounting for Monte Carlo error, and 2) proposing efficient numerical algorithms to implement the confidence intervals and $p$-values.

The study of almost surely discrete random probability measures is an active line of research in Bayesian nonparametrics. The idea of assuming interaction across the atoms of the random probability measure has recently spurred significant interest in the context of Bayesian mixture models. This allows the definition of priors that encourage well separated and interpretable clusters. In this work, we provide a unified framework for the construction and the Bayesian analysis of random probability measures with interacting atoms, encompassing both repulsive and attractive behaviors. Specifically we derive closed-form expressions for the posterior distribution, the marginal and predictive distributions, which were not previously available except for the case of measures with i.i.d. atoms. We show how these quantities are fundamental both for prior elicitation and to develop new posterior simulation algorithms for hierarchical mixture models. Our results are obtained without any assumption on the finite point process that governs the atoms of the random measure. Their proofs rely on new analytical tools borrowed from the theory of Palm calculus and that might be of independent interest. We specialize our treatment to the classes of Poisson, Gibbs, and Determinantal point processes, as well as to the case of shot-noise Cox processes.

While the inverse probability of treatment weighting (IPTW) is a commonly used approach for treatment comparisons in observational data, the resulting estimates may be subject to bias and excessively large variance when there is lack of overlap in the propensity score distributions. By smoothly down-weighting the units with extreme propensity scores, overlap weighting (OW) can help mitigate the bias and variance issues associated with IPTW. Although theoretical and simulation results have supported the use of OW with continuous and binary outcomes, its performance with right-censored survival outcomes remains to be further investigated, especially when the target estimand is defined based on the restricted mean survival time (RMST)-a clinically meaningful summary measure free of the proportional hazards assumption. In this article, we combine propensity score weighting and inverse probability of censoring weighting to estimate the restricted mean counterfactual survival times, and propose computationally-efficient variance estimators. We conduct simulations to compare the performance of IPTW, trimming, and OW in terms of bias, variance, and 95% confidence interval coverage, under various degrees of covariate overlap. Regardless of overlap, we demonstrate the advantage of OW over IPTW and trimming methods in bias, variance, and coverage when the estimand is defined based on RMST.

We are studying the problem of estimating density in a wide range of metric spaces, including the Euclidean space, the sphere, the ball, and various Riemannian manifolds. Our framework involves a metric space with a doubling measure and a self-adjoint operator, whose heat kernel exhibits Gaussian behaviour. We begin by reviewing the construction of kernel density estimators and the related background information. As a novel result, we present a pointwise kernel density estimation for probability density functions that belong to general H\"{o}lder spaces. The study is accompanied by an application in Seismology. Precisely, we analyze a globally-indexed dataset of earthquake occurrence and compare the out-of-sample performance of several approximated kernel density estimators indexed on the sphere.

北京阿比特科技有限公司