While the inverse probability of treatment weighting (IPTW) is a commonly used approach for treatment comparisons in observational data, the resulting estimates may be subject to bias and excessively large variance when there is lack of overlap in the propensity score distributions. By smoothly down-weighting the units with extreme propensity scores, overlap weighting (OW) can help mitigate the bias and variance issues associated with IPTW. Although theoretical and simulation results have supported the use of OW with continuous and binary outcomes, its performance with right-censored survival outcomes remains to be further investigated, especially when the target estimand is defined based on the restricted mean survival time (RMST)-a clinically meaningful summary measure free of the proportional hazards assumption. In this article, we combine propensity score weighting and inverse probability of censoring weighting to estimate the restricted mean counterfactual survival times, and propose computationally-efficient variance estimators. We conduct simulations to compare the performance of IPTW, trimming, and OW in terms of bias, variance, and 95% confidence interval coverage, under various degrees of covariate overlap. Regardless of overlap, we demonstrate the advantage of OW over IPTW and trimming methods in bias, variance, and coverage when the estimand is defined based on RMST.
The vast majority of literature on evaluating the significance of a treatment effect based on observational data has been confined to discrete treatments. These methods are not applicable to drawing inference for a continuous treatment, which arises in many important applications. To adjust for confounders when evaluating a continuous treatment, existing inference methods often rely on discretizing the treatment or using (possibly misspecified) parametric models for the effect curve. Recently, Kennedy et al. (2017) proposed nonparametric doubly robust estimation for a continuous treatment effect in observational studies. However, inference for the continuous treatment effect is a harder problem. To the best of our knowledge, a completely nonparametric doubly robust approach for inference in this setting is not yet available. We develop such a nonparametric doubly robust procedure in this paper for making inference on the continuous treatment effect curve. Using empirical process techniques for local U- and V-processes, we establish the test statistic's asymptotic distribution. Furthermore, we propose a wild bootstrap procedure for implementing the test in practice. We illustrate the new method via simulations and a study of a constructed dataset relating the effect of nurse staffing hours on hospital performance. We implement our doubly robust dose response test in the R package DRDRtest on CRAN.
Factors models are routinely used to analyze high-dimensional data in both single-study and multi-study settings. Bayesian inference for such models relies on Markov Chain Monte Carlo (MCMC) methods which scale poorly as the number of studies, observations, or measured variables increase. To address this issue, we propose variational inference algorithms to approximate the posterior distribution of Bayesian latent factor models using the multiplicative gamma process shrinkage prior. The proposed algorithms provide fast approximate inference at a fraction of the time and memory of MCMC-based implementations while maintaining comparable accuracy in characterizing the data covariance matrix. We conduct extensive simulations to evaluate our proposed algorithms and show their utility in estimating the model for high-dimensional multi-study gene expression data in ovarian cancers. Overall, our proposed approaches enable more efficient and scalable inference for factor models, facilitating their use in high-dimensional settings.
Studies investigating neural information processing often implicitly ask both, which processing strategy out of several alternatives is used and how this strategy is implemented in neural dynamics. A prime example are studies on predictive coding. These often ask if confirmed predictions about inputs or predictions errors between internal predictions and inputs are passed on in a hierarchical neural system--while at the same time looking for the neural correlates of coding for errors and predictions. If we do not know exactly what a neural system predicts at any given moment, this results in a circular analysis--as has been criticized correctly. To circumvent such circular analysis, we propose to express information processing strategies (such as predictive coding) by local information-theoretic quantities, such that they can be estimated directly from neural data. We demonstrate our approach by investigating two opposing accounts of predictive coding-like processing strategies, where we quantify the building blocks of predictive coding, namely predictability of inputs and transfer of information, by local active information storage and local transfer entropy. We define testable hypotheses on the relationship of both quantities to identify which of the assumed strategies was used. We demonstrate our approach on spiking data from the retinogeniculate synapse of the cat. Applying our local information dynamics framework, we are able to show that the synapse codes for predictable rather than surprising input. To support our findings, we apply measures from partial information decomposition, which allow to differentiate if the transferred information is primarily bottom-up sensory input or information transferred conditionally on the current state of the synapse. Supporting our local information-theoretic results, we find that the synapse preferentially transfers bottom-up information.
The application of machine learning models can be significantly impeded by the occurrence of distributional shifts, as the assumption of homogeneity between the population of training and testing samples in machine learning and statistics may not be feasible in practical situations. One way to tackle this problem is to use invariant learning, such as invariant risk minimization (IRM), to acquire an invariant representation that aids in generalization with distributional shifts. This paper develops methods for obtaining distribution-free prediction regions to describe uncertainty estimates for invariant representations, accounting for the distribution shifts of data from different environments. Our approach involves a weighted conformity score that adapts to the specific environment in which the test sample is situated. We construct an adaptive conformal interval using the weighted conformity score and prove its conditional average under certain conditions. To demonstrate the effectiveness of our approach, we conduct several numerical experiments, including simulation studies and a practical example using real-world data.
Wearable devices permit the continuous monitoring of biological processes, such as blood glucose metabolism, and behavior, such as sleep quality and physical activity. The continuous monitoring often occurs in epochs of 60 seconds over multiple days, resulting in high dimensional longitudinal curves that are best described and analyzed as functional data. From this perspective, the functional data are smooth, latent functions obtained at discrete time intervals and prone to homoscedastic white noise. However, the assumption of homoscedastic errors might not be appropriate in this setting because the devices collect the data serially. While researchers have previously addressed measurement error in scalar covariates prone to errors, less work has been done on correcting measurement error in high dimensional longitudinal curves prone to heteroscedastic errors. We present two new methods for correcting measurement error in longitudinal functional curves prone to complex measurement error structures in multi-level generalized functional linear regression models. These methods are based on two-stage scalable regression calibration. We assume that the distribution of the scalar responses and the surrogate measures prone to heteroscedastic errors both belong in the exponential family and that the measurement errors follow Gaussian processes. In simulations and sensitivity analyses, we established some finite sample properties of these methods. In our simulations, both regression calibration methods for correcting measurement error performed better than estimators based on averaging the longitudinal functional data and using observations from a single day. We also applied the methods to assess the relationship between physical activity and type 2 diabetes in community dwelling adults in the United States who participated in the National Health and Nutrition Examination Survey.
In experimental and observational studies, there is often interest in understanding the mechanism through which an intervention program improves the final outcome. Causal mediation analyses have been developed for this purpose but are primarily considered for the case of perfect treatment compliance, with a few exceptions that require the exclusion restriction assumption. In this article, we consider a semiparametric framework for assessing causal mediation in the presence of treatment noncompliance without the exclusion restriction. We propose a set of assumptions to identify the natural mediation effects for the entire study population and further, for the principal natural mediation effects within subpopulations characterized by the potential compliance behavior. We derive the efficient influence functions for the principal natural mediation effect estimands and motivate a set of multiply robust estimators for inference. The multiply robust estimators remain consistent to their respective estimands under four types of misspecification of the working models and are efficient when all nuisance models are correctly specified. We further introduce a nonparametric extension of the proposed estimators by incorporating machine learners to estimate the nuisance functions. Sensitivity analysis methods are also discussed for addressing key identification assumptions. We demonstrate the proposed methods via simulations and an application to a real data example.
The Tsallis $q$-Gaussian distribution is a powerful generalization of the standard Gaussian distribution and is commonly used in various fields, including non-extensive statistical mechanics, financial markets and image processing. It belongs to the $q$-distribution family, which is characterized by a non-additive entropy. Due to their versatility and practicality, $q$-Gaussians are a natural choice for modeling input quantities in measurement models. This paper presents the characteristic function of a linear combination of independent $q$-Gaussian random variables and proposes a numerical method for its inversion. The proposed technique makes it possible to determine the exact probability distribution of the output quantity in linear measurement models, with the input quantities modeled as independent $q$-Gaussian random variables. It provides an alternative computational procedure to the Monte Carlo method for uncertainty analysis through the propagation of distributions.
Despite substantial progress in abstractive text summarization to generate fluent and informative texts, the factual inconsistency in the generated summaries remains an important yet challenging problem to be solved. In this paper, we construct causal graphs for abstractive text summarization and identify the intrinsic causes of the factual inconsistency, i.e., the language bias and irrelevancy bias, and further propose a debiasing framework, named CoFactSum, to alleviate the causal effects of these biases by counterfactual estimation. Specifically, the proposed CoFactSum provides two counterfactual estimation strategies, i.e., Explicit Counterfactual Masking with an explicit dynamic masking strategy, and Implicit Counterfactual Training with an implicit discriminative cross-attention mechanism. Meanwhile, we design a Debiasing Degree Adjustment mechanism to dynamically adapt the debiasing degree at each decoding step. Extensive experiments on two widely-used summarization datasets demonstrate the effectiveness of CoFactSum in enhancing the factual consistency of generated summaries compared with several baselines.
Across domains such as medicine, employment, and criminal justice, predictive models often target labels that imperfectly reflect the outcomes of interest to experts and policymakers. For example, clinical risk assessments deployed to inform physician decision-making often predict measures of healthcare utilization (e.g., costs, hospitalization) as a proxy for patient medical need. These proxies can be subject to outcome measurement error when they systematically differ from the target outcome they are intended to measure. However, prior modeling efforts to characterize and mitigate outcome measurement error overlook the fact that the decision being informed by a model often serves as a risk-mitigating intervention that impacts the target outcome of interest and its recorded proxy. Thus, in these settings, addressing measurement error requires counterfactual modeling of treatment effects on outcomes. In this work, we study intersectional threats to model reliability introduced by outcome measurement error, treatment effects, and selection bias from historical decision-making policies. We develop an unbiased risk minimization method which, given knowledge of proxy measurement error properties, corrects for the combined effects of these challenges. We also develop a method for estimating treatment-dependent measurement error parameters when these are unknown in advance. We demonstrate the utility of our approach theoretically and via experiments on real-world data from randomized controlled trials conducted in healthcare and employment domains. As importantly, we demonstrate that models correcting for outcome measurement error or treatment effects alone suffer from considerable reliability limitations. Our work underscores the importance of considering intersectional threats to model validity during the design and evaluation of predictive models for decision support.
Knowledge graphs (KGs) capture knowledge in the form of head--relation--tail triples and are a crucial component in many AI systems. There are two important reasoning tasks on KGs: (1) single-hop knowledge graph completion, which involves predicting individual links in the KG; and (2), multi-hop reasoning, where the goal is to predict which KG entities satisfy a given logical query. Embedding-based methods solve both tasks by first computing an embedding for each entity and relation, then using them to form predictions. However, existing scalable KG embedding frameworks only support single-hop knowledge graph completion and cannot be applied to the more challenging multi-hop reasoning task. Here we present Scalable Multi-hOp REasoning (SMORE), the first general framework for both single-hop and multi-hop reasoning in KGs. Using a single machine SMORE can perform multi-hop reasoning in Freebase KG (86M entities, 338M edges), which is 1,500x larger than previously considered KGs. The key to SMORE's runtime performance is a novel bidirectional rejection sampling that achieves a square root reduction of the complexity of online training data generation. Furthermore, SMORE exploits asynchronous scheduling, overlapping CPU-based data sampling, GPU-based embedding computation, and frequent CPU--GPU IO. SMORE increases throughput (i.e., training speed) over prior multi-hop KG frameworks by 2.2x with minimal GPU memory requirements (2GB for training 400-dim embeddings on 86M-node Freebase) and achieves near linear speed-up with the number of GPUs. Moreover, on the simpler single-hop knowledge graph completion task SMORE achieves comparable or even better runtime performance to state-of-the-art frameworks on both single GPU and multi-GPU settings.