亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

An edge $e$ of a graph $G$ is called deletable for some orientation $o$ if the restriction of $o$ to $G-e$ is a strong orientation. In 2021, H\"orsch and Szigeti proposed a new parameter for $3$-edge-connected graphs, called the Frank number, which refines $k$-edge-connectivity. The Frank number is defined as the minimum number of orientations of $G$ for which every edge of $G$ is deletable in at least one of them. They showed that every $3$-edge-connected graph has Frank number at most $7$ and that in case these graphs are also $3$-edge-colourable graphs the parameter is at most $3$. Here we strengthen the latter result by showing that such graphs have Frank number $2$, which also confirms a conjecture by Bar\'at and Bl\'aszik. Furthermore, we prove two sufficient conditions for cubic graphs to have Frank number $2$ and use them in an algorithm to computationally show that the Petersen graph is the only cyclically $4$-edge-connected cubic graph up to $36$ vertices having Frank number greater than $2$.

相關內容

Despite the growing interest in parallel-in-time methods as an approach to accelerate numerical simulations in atmospheric modelling, improving their stability and convergence remains a substantial challenge for their application to operational models. In this work, we study the temporal parallelization of the shallow water equations on the rotating sphere combined with time-stepping schemes commonly used in atmospheric modelling due to their stability properties, namely an Eulerian implicit-explicit (IMEX) method and a semi-Lagrangian semi-implicit method (SL-SI-SETTLS). The main goal is to investigate the performance of parallel-in-time methods, namely Parareal and Multigrid Reduction in Time (MGRIT), when these well-established schemes are used on the coarse discretization levels and provide insights on how they can be improved for better performance. We begin by performing an analytical stability study of Parareal and MGRIT applied to a linearized ordinary differential equation depending on the choice of coarse scheme. Next, we perform numerical simulations of two standard tests to evaluate the stability, convergence and speedup provided by the parallel-in-time methods compared to a fine reference solution computed serially. We also conduct a detailed investigation on the influence of artificial viscosity and hyperviscosity approaches, applied on the coarse discretization levels, on the performance of the temporal parallelization. Both the analytical stability study and the numerical simulations indicate a poorer stability behaviour when SL-SI-SETTLS is used on the coarse levels, compared to the IMEX scheme. With the IMEX scheme, a better trade-off between convergence, stability and speedup compared to serial simulations can be obtained under proper parameters and artificial viscosity choices, opening the perspective of the potential competitiveness for realistic models.

We consider a new semidefinite programming relaxation for directed edge expansion, which is obtained by adding triangle inequalities to the reweighted eigenvalue formulation. Applying the matrix multiplicative weight update method to this relaxation, we derive almost linear-time algorithms to achieve $O(\sqrt{\log{n}})$-approximation and Cheeger-type guarantee for directed edge expansion, as well as an improved cut-matching game for directed graphs. This provides a primal-dual flow-based framework to obtain the best known algorithms for directed graph partitioning. The same approach also works for vertex expansion and for hypergraphs, providing a simple and unified approach to achieve the best known results for different expansion problems and different algorithmic techniques.

A matchstick graph is a plane graph with edges drawn as unit-distance line segments. Harborth introduced these graphs in 1981 and conjectured that the maximum number of edges for a matchstick graph on $n$ vertices is $\lfloor 3n-\sqrt{12n-3} \rfloor$. In this paper we prove this conjecture for all $n\geq 1$. The main geometric ingredient of the proof is an isoperimetric inequality related to L'Huilier's inequality.

In this work we connect two notions: That of the nonparametric mode of a probability measure, defined by asymptotic small ball probabilities, and that of the Onsager-Machlup functional, a generalized density also defined via asymptotic small ball probabilities. We show that in a separable Hilbert space setting and under mild conditions on the likelihood, modes of a Bayesian posterior distribution based upon a Gaussian prior exist and agree with the minimizers of its Onsager-Machlup functional and thus also with weak posterior modes. We apply this result to inverse problems and derive conditions on the forward mapping under which this variational characterization of posterior modes holds. Our results show rigorously that in the limit case of infinite-dimensional data corrupted by additive Gaussian or Laplacian noise, nonparametric maximum a posteriori estimation is equivalent to Tikhonov-Phillips regularization. In comparison with the work of Dashti, Law, Stuart, and Voss (2013), the assumptions on the likelihood are relaxed so that they cover in particular the important case of white Gaussian process noise. We illustrate our results by applying them to a severely ill-posed linear problem with Laplacian noise, where we express the maximum a posteriori estimator analytically and study its rate of convergence in the small noise limit.

The Rank Decoding problem (RD) is at the core of rank-based cryptography. This problem can also be seen as a structured version of MinRank, which is ubiquitous in multivariate cryptography. Recently, \cite{BBBGNRT20,BBCGPSTV20} proposed attacks based on two new algebraic modelings, namely the MaxMinors modeling which is specific to RD and the Support-Minors modeling which applies to MinRank in general. Both improved significantly the complexity of algebraic attacks on these two problems. In the case of RD and contrarily to what was believed up to now, these new attacks were shown to be able to outperform combinatorial attacks and this even for very small field sizes. However, we prove here that the analysis performed in \cite{BBCGPSTV20} for one of these attacks which consists in mixing the MaxMinors modeling with the Support-Minors modeling to solve RD is too optimistic and leads to underestimate the overall complexity. This is done by exhibiting linear dependencies between these equations and by considering an $\fqm$ version of these modelings which turns out to be instrumental for getting a better understanding of both systems. Moreover, by working over $\Fqm$ rather than over $\ff{q}$, we are able to drastically reduce the number of variables in the system and we (i) still keep enough algebraic equations to be able to solve the system, (ii) are able to analyze rigorously the complexity of our approach. This new approach may improve the older MaxMinors approach on RD from \cite{BBBGNRT20,BBCGPSTV20} for certain parameters. We also introduce a new hybrid approach on the Support-Minors system whose impact is much more general since it applies to any MinRank problem. This technique improves significantly the complexity of the Support-Minors approach for small to moderate field sizes.

An $(n,m)$-graph is a graph with $n$ types of arcs and $m$ types of edges. A homomorphism of an $(n,m)$-graph $G$ to another $(n,m)$-graph $H$ is a vertex mapping that preserves adjacency, its direction, and its type. The minimum value of $|V(H)|$ such that $G$ admits a homomorphism to $H$ is the $(n,m)$-chromatic number of $G$, denoted by $\mychi_{n,m}(G)$. This parameter was introduced by Ne\v{s}et\v{r}il and Raspaud (J. Comb. Theory. Ser. B 2000). In this article, we show that the arboricity of $G$ is bounded by a function of $\mychi_{n,m}(G)$, but not the other way round. We also show that acyclic chromatic number of $G$ is bounded by a function of $\mychi_{n,m}(G)$, while the other way round bound was known beforehand. Moreover, we show that $(n,m)$-chromatic number for the family of graphs having maximum average degree less than $2+ \frac{2}{4(2n+m)-1}$, which contains the family of planar graphs having girth at least $8(2n+m)$ as a subfamily, is equal to $2(2n+m)+1$. This improves the previously known result which proved that the $(n,m)$-chromatic number for the family planar graphs having girth at least $10(2n+m)-4$ is equal to $2(2n+m)+1$. It is known that the $(n,m)$-chromatic number for the family of partial $2$-trees bounded below and above by quadratic functions of $(2n+m)$ and that the lower bound is tight when $(2n+m)=2$. We show that the lower bound is not tight when $(2n+m)=3$ by improving the corresponding lower bounds by one. We manage to improve some of the upper bounds in these cases as well.

An $(n,m)$-graph is a graph with $n$ types of arcs and $m$ types of edges. A homomorphism of an $(n,m)$-graph $G$ to another $(n,m)$-graph $H$ is a vertex mapping that preserves the adjacencies along with their types and directions. The order of a smallest (with respect to the number of vertices) such $H$ is the $(n,m)$-chromatic number of $G$.Moreover, an $(n,m)$-relative clique $R$ of an $(n,m)$-graph $G$ is a vertex subset of $G$ for which no two distinct vertices of $R$ get identified under any homomorphism of $G$. The $(n,m)$-relative clique number of $G$, denoted by $\omega_{r(n,m)}(G)$, is the maximum $|R|$ such that $R$ is an $(n,m)$-relative clique of $G$. In practice, $(n,m)$-relative cliques are often used for establishing lower bounds of $(n,m)$-chromatic number of graph families. Generalizing an open problem posed by Sopena [Discrete Mathematics 2016] in his latest survey on oriented coloring, Chakroborty, Das, Nandi, Roy and Sen [Discrete Applied Mathematics 2022] conjectured that $\omega_{r(n,m)}(G) \leq 2 (2n+m)^2 + 2$ for any triangle-free planar $(n,m)$-graph $G$ and that this bound is tight for all $(n,m) \neq (0,1)$.In this article, we positively settle this conjecture by improving the previous upper bound of $\omega_{r(n,m)}(G) \leq 14 (2n+m)^2 + 2$ to $\omega_{r(n,m)}(G) \leq 2 (2n+m)^2 + 2$, and by finding examples of triangle-free planar graphs that achieve this bound. As a consequence of the tightness proof, we also establish a new lower bound of $2 (2n+m)^2 + 2$ for the $(n,m)$-chromatic number for the family of triangle-free planar graphs.

Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.

Deep learning methods for graphs achieve remarkable performance on many node-level and graph-level prediction tasks. However, despite the proliferation of the methods and their success, prevailing Graph Neural Networks (GNNs) neglect subgraphs, rendering subgraph prediction tasks challenging to tackle in many impactful applications. Further, subgraph prediction tasks present several unique challenges, because subgraphs can have non-trivial internal topology, but also carry a notion of position and external connectivity information relative to the underlying graph in which they exist. Here, we introduce SUB-GNN, a subgraph neural network to learn disentangled subgraph representations. In particular, we propose a novel subgraph routing mechanism that propagates neural messages between the subgraph's components and randomly sampled anchor patches from the underlying graph, yielding highly accurate subgraph representations. SUB-GNN specifies three channels, each designed to capture a distinct aspect of subgraph structure, and we provide empirical evidence that the channels encode their intended properties. We design a series of new synthetic and real-world subgraph datasets. Empirical results for subgraph classification on eight datasets show that SUB-GNN achieves considerable performance gains, outperforming strong baseline methods, including node-level and graph-level GNNs, by 12.4% over the strongest baseline. SUB-GNN performs exceptionally well on challenging biomedical datasets when subgraphs have complex topology and even comprise multiple disconnected components.

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

北京阿比特科技有限公司