亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

An $(n,m)$-graph is a graph with $n$ types of arcs and $m$ types of edges. A homomorphism of an $(n,m)$-graph $G$ to another $(n,m)$-graph $H$ is a vertex mapping that preserves adjacency, its direction, and its type. The minimum value of $|V(H)|$ such that $G$ admits a homomorphism to $H$ is the $(n,m)$-chromatic number of $G$, denoted by $\mychi_{n,m}(G)$. This parameter was introduced by Ne\v{s}et\v{r}il and Raspaud (J. Comb. Theory. Ser. B 2000). In this article, we show that the arboricity of $G$ is bounded by a function of $\mychi_{n,m}(G)$, but not the other way round. We also show that acyclic chromatic number of $G$ is bounded by a function of $\mychi_{n,m}(G)$, while the other way round bound was known beforehand. Moreover, we show that $(n,m)$-chromatic number for the family of graphs having maximum average degree less than $2+ \frac{2}{4(2n+m)-1}$, which contains the family of planar graphs having girth at least $8(2n+m)$ as a subfamily, is equal to $2(2n+m)+1$. This improves the previously known result which proved that the $(n,m)$-chromatic number for the family planar graphs having girth at least $10(2n+m)-4$ is equal to $2(2n+m)+1$. It is known that the $(n,m)$-chromatic number for the family of partial $2$-trees bounded below and above by quadratic functions of $(2n+m)$ and that the lower bound is tight when $(2n+m)=2$. We show that the lower bound is not tight when $(2n+m)=3$ by improving the corresponding lower bounds by one. We manage to improve some of the upper bounds in these cases as well.

相關內容

We study the approximation properties of complex-valued polynomial Trefftz spaces for the $(d+1)$-dimensional linear time-dependent Schr\"odinger equation. More precisely, we prove that for the space-time Trefftz discontinuous Galerkin variational formulation proposed by G\'omez, Moiola (SIAM. J. Num. Anal. 60(2): 688-714, 2022), the same $h$-convergence rates as for polynomials of degree $p$ in $(d + 1)$ variables can be obtained in a mesh-dependent norm by using a space of Trefftz polynomials of anisotropic degree. For such a space, the dimension is equal to that of the space of polynomials of degree $2p$ in $d$ variables, and bases are easily constructed.

Positive linear programs (LPs) model many graph and operations research problems. One can solve for a $(1+\epsilon)$-approximation for positive LPs, for any selected $\epsilon$, in polylogarithmic depth and near-linear work via variations of the multiplicative weight update (MWU) method. Despite extensive theoretical work on these algorithms through the decades, their empirical performance is not well understood. In this work, we implement and test an efficient parallel algorithm for solving positive LP relaxations, and apply it to graph problems such as densest subgraph, bipartite matching, vertex cover and dominating set. We accelerate the algorithm via a new step size search heuristic. Our implementation uses sparse linear algebra optimization techniques such as fusion of vector operations and use of sparse format. Furthermore, we devise an implicit representation for graph incidence constraints. We demonstrate the parallel scalability with the use of threading OpenMP and MPI on the Stampede2 supercomputer. We compare this implementation with exact libraries and specialized libraries for the above problems in order to evaluate MWU's practical standing for both accuracy and performance among other methods. Our results show this implementation is faster than general purpose LP solvers (IBM CPLEX, Gurobi) in all of our experiments, and in some instances, outperforms state-of-the-art specialized parallel graph algorithms.

We consider the Max-$3$-Section problem, where we are given an undirected graph $ G=(V,E)$ equipped with non-negative edge weights $w :E\rightarrow \mathbb{R}_+$ and the goal is to find a partition of $V$ into three equisized parts while maximizing the total weight of edges crossing between different parts. Max-$3$-Section is closely related to other well-studied graph partitioning problems, e.g., Max-$k$-Cut, Max-$3$-Cut, and Max-Bisection. We present a polynomial time algorithm achieving an approximation of $ 0.795$, that improves upon the previous best known approximation of $ 0.673$. The requirement of multiple parts that have equal sizes renders Max-$3$-Section much harder to cope with compared to, e.g., Max-Bisection. We show a new algorithm that combines the existing approach of Lassere hierarchy along with a random cut strategy that suffices to give our result.

Kalai's $3^d$-conjecture states that every centrally symmetric $d$-polytope has at least $3^d$ faces. We give short proofs for two special cases: if $P$ is unconditional (that is, invariant w.r.t. reflection in any coordinate hyperplane), and more generally, if $P$ is locally anti-blocking (that is, looks like an unconditional polytope in every orthant). In both cases we show that the minimum is attained exactly for the Hanner polytopes.

In the Activation Edge-Multicover problem we are given a multigraph $G=(V,E)$ with activation costs $\{c_{e}^u,c_{e}^v\}$ for every edge $e=uv \in E$, and degree requirements $r=\{r_v:v \in V\}$. The goal is to find an edge subset $J \subseteq E$ of minimum activation cost $\sum_{v \in V}\max\{c_{uv}^v:uv \in J\}$,such that every $v \in V$ has at least $r_v$ neighbors in the graph $(V,J)$. Let $k= \max_{v \in V} r_v$ be the maximum requirement and let $\theta=\max_{e=uv \in E} \frac{\max\{c_e^u,c_e^v\}}{\min\{c_e^u,c_e^v\}}$ be the maximum quotient between the two costs of an edge. For $\theta=1$ the problem admits approximation ratio $O(\log k)$. For $k=1$ it generalizes the Set Cover problem (when $\theta=\infty$), and admits a tight approximation ratio $O(\log n)$. This implies approximation ratio $O(k \log n)$ for general $k$ and $\theta$, and no better approximation ratio was known. We obtain the first logarithmic approximation ratio $O(\log k +\log\min\{\theta,n\})$, that bridges between the two known ratios -- $O(\log k)$ for $\theta=1$ and $O(\log n)$ for $k=1$. This implies approximation ratio $O\left(\log k +\log\min\{\theta,n\}\right) +\beta \cdot (\theta+1)$ for the Activation $k$-Connected Subgraph problem, where $\beta$ is the best known approximation ratio for the ordinary min-cost version of the problem.

We give essentially tight bounds for, $\nu(d,k)$, the maximum number of distinct neighbourhoods on a set $X$ of $k$ vertices in a graph with twin-width at most~$d$. Using the celebrated Marcus-Tardos theorem, two independent works [Bonnet et al., Algorithmica '22; Przybyszewski '22] have shown the upper bound $\nu(d,k) \leqslant \exp(\exp(O(d)))k$, with a double-exponential dependence in the twin-width. The work of [Gajarsky et al., ICALP '22], using the framework of local types, implies the existence of a single-exponential bound (without explicitly stating such a bound). We give such an explicit bound, and prove that it is essentially tight. Indeed, we give a short self-contained proof that for every $d$ and $k$ $$\nu(d,k) \leqslant (d+2)2^{d+1}k = 2^{d+\log d+\Theta(1)}k,$$ and build a bipartite graph implying $\nu(d,k) \geqslant 2^{d+\log d+\Theta(1)}k$, in the regime when $k$ is large enough compared to~$d$.

The power of Clifford or, geometric, algebra lies in its ability to represent geometric operations in a concise and elegant manner. Clifford algebras provide the natural generalizations of complex, dual numbers and quaternions into non-commutative multivectors. The paper demonstrates an algorithm for the computation of inverses of such numbers in a non-degenerate Clifford algebra of an arbitrary dimension. The algorithm is a variation of the Faddeev-LeVerrier-Souriau algorithm and is implemented in the open-source Computer Algebra System Maxima. Symbolic and numerical examples in different Clifford algebras are presented.

We prove lower bounds for the randomized approximation of the embedding $\ell_1^m \rightarrow \ell_\infty^m$ based on algorithms that use arbitrary linear (hence non-adaptive) information provided by a (randomized) measurement matrix $N \in \mathbb{R}^{n \times m}$. These lower bounds reflect the increasing difficulty of the problem for $m \to \infty$, namely, a term $\sqrt{\log m}$ in the complexity $n$. This result implies that non-compact operators between arbitrary Banach spaces are not approximable using non-adaptive Monte Carlo methods. We also compare these lower bounds for non-adaptive methods with upper bounds based on adaptive, randomized methods for recovery for which the complexity $n$ only exhibits a $(\log\log m)$-dependence. In doing so we give an example of linear problems where the error for adaptive vs. non-adaptive Monte Carlo methods shows a gap of order $n^{1/2} ( \log n)^{-1/2}$.

This paper concerns an expansion of first-order Belnap-Dunn logic which is called $\mathrm{BD}^{\supset,\mathsf{F}}$. Its connectives and quantifiers are all familiar from classical logic and its logical consequence relation is very closely connected to the one of classical logic. Results that convey this close connection are established. Fifteen classical laws of logical equivalence are used to distinguish $\mathrm{BD}^{\supset,\mathsf{F}}$ from all other four-valued logics with the same connectives and quantifiers whose logical consequence relation is as closely connected to the logical consequence relation of classical logic. It is shown that several interesting non-classical connectives added to Belnap-Dunn logic in its expansions that have been studied earlier are definable in $\mathrm{BD}^{\supset,\mathsf{F}}$. It is also established that $\mathrm{BD}^{\supset,\mathsf{F}}$ is both paraconsistent and paracomplete. Moreover, a sequent calculus proof system that is sound and complete with respect to the logical consequence relation of $\mathrm{BD}^{\supset,\mathsf{F}}$ is presented.

We analyze an algorithmic question about immersion theory: for which $m$, $n$, and $CAT=\mathbf{Diff}$ or $\mathbf{PL}$ is the question of whether an $m$-dimensional $CAT$-manifold is immersible in $\mathbb{R}^n$ decidable? As a corollary, we show that the smooth embeddability of an $m$-manifold with boundary in $\mathbb{R}^n$ is undecidable when $n-m$ is even and $11m \geq 10n+1$.

北京阿比特科技有限公司