We analyze an algorithmic question about immersion theory: for which $m$, $n$, and $CAT=\mathbf{Diff}$ or $\mathbf{PL}$ is the question of whether an $m$-dimensional $CAT$-manifold is immersible in $\mathbb{R}^n$ decidable? As a corollary, we show that the smooth embeddability of an $m$-manifold with boundary in $\mathbb{R}^n$ is undecidable when $n-m$ is even and $11m \geq 10n+1$.
We analyze the conforming approximation of the time-harmonic Maxwell's equations using N\'ed\'elec (edge) finite elements. We prove that the approximation is asymptotically optimal, i.e., the approximation error in the energy norm is bounded by the best-approximation error times a constant that tends to one as the mesh is refined and/or the polynomial degree is increased. Moreover, under the same conditions on the mesh and/or the polynomial degree, we establish discrete inf-sup stability with a constant that corresponds to the continuous constant up to a factor of two at most. Our proofs apply under minimal regularity assumptions on the exact solution, so that general domains, material coefficients, and right-hand sides are allowed.
We consider approximating solutions to parameterized linear systems of the form $A(\mu_1,\mu_2) x(\mu_1,\mu_2) = b$, where $(\mu_1, \mu_2) \in \mathbb{R}^2$. Here the matrix $A(\mu_1,\mu_2) \in \mathbb{R}^{n \times n}$ is nonsingular, large, and sparse and depends nonlinearly on the parameters $\mu_1$ and $\mu_2$. Specifically, the system arises from a discretization of a partial differential equation and $x(\mu_1,\mu_2) \in \mathbb{R}^n$, $b \in \mathbb{R}^n$. This work combines companion linearization with the Krylov subspace method preconditioned bi-conjugate gradient (BiCG) and a decomposition of a tensor matrix of precomputed solutions, called snapshots. As a result, a reduced order model of $x(\mu_1,\mu_2)$ is constructed, and this model can be evaluated in a cheap way for many values of the parameters. The decomposition is performed efficiently using the sparse grid based higher-order proper generalized decomposition (HOPGD), and the snapshots are generated as one variable functions of $\mu_1$ or of $\mu_2$. Tensor decompositions performed on a set of snapshots can fail to reach a certain level of accuracy, and it is not possible to know a priori if the decomposition will be successful. This method offers a way to generate a new set of solutions on the same parameter space at little additional cost. An interpolation of the model is used to produce approximations on the entire parameter space, and this method can be used to solve a parameter estimation problem. Numerical examples of a parameterized Helmholtz equation show the competitiveness of our approach. The simulations are reproducible, and the software is available online.
We identify a family of $O(|E(G)|^2)$ nontrivial facets of the connected matching polytope of a graph $G$, that is, the convex hull of incidence vectors of matchings in $G$ whose covered vertices induce a connected subgraph. Accompanying software to further inspect the polytope of an input graph is available.
Let $(M,g)$ be a Riemannian manifold. If $\mu$ is a probability measure on $M$ given by a continuous density function, one would expect the Fr\'{e}chet means of data-samples $Q=(q_1,q_2,\dots, q_N)\in M^N$, with respect to $\mu$, to behave ``generically''; e.g. the probability that the Fr\'{e}chet mean set $\mbox{FM}(Q)$ has any elements that lie in a given, positive-codimension submanifold, should be zero for any $N\geq 1$. Even this simplest instance of genericity does not seem to have been proven in the literature, except in special cases. The main result of this paper is a general, and stronger, genericity property: given i.i.d. absolutely continuous $M$-valued random variables $X_1,\dots, X_N$, and a subset $A\subset M$ of volume-measure zero, $\mbox{Pr}\left\{\mbox{FM}(\{X_1,\dots,X_N\})\subset M\backslash A\right\}=1.$ We also establish a companion theorem for equivariant Fr\'{e}chet means, defined when $(M,g)$ arises as the quotient of a Riemannian manifold $(\widetilde{M},\tilde{g})$ by a free, isometric action of a finite group. The equivariant Fr\'{e}chet means lie in $\widetilde{M}$, but, as we show, project down to the ordinary Fr\'{e}chet sample means, and enjoy a similar genericity property. Both these theorems are proven as consequences of a purely geometric (and quite general) result that constitutes the core mathematics in this paper: If $A\subset M$ has volume zero in $M$ , then the set $\{Q\in M^N : \mbox{FM}(Q) \cap A\neq\emptyset\}$ has volume zero in $M^N$. We conclude the paper with an application to partial scaling-rotation means, a type of mean for symmetric positive-definite matrices.
We investigate the combinatorics of max-pooling layers, which are functions that downsample input arrays by taking the maximum over shifted windows of input coordinates, and which are commonly used in convolutional neural networks. We obtain results on the number of linearity regions of these functions by equivalently counting the number of vertices of certain Minkowski sums of simplices. We characterize the faces of such polytopes and obtain generating functions and closed formulas for the number of vertices and facets in a 1D max-pooling layer depending on the size of the pooling windows and stride, and for the number of vertices in a special case of 2D max-pooling.
We perturb a real matrix $A$ of full column rank, and derive lower bounds for the smallest singular values of the perturbed matrix, in terms of normwise absolute perturbations. Our bounds, which extend existing lower-order expressions, demonstrate the potential increase in the smallest singular values, and represent a qualitative model for the increase in the small singular values after a matrix has been downcast to a lower arithmetic precision. Numerical experiments confirm the qualitative validity of this model and its ability to predict singular values changes in the presence of decreased arithmetic precision.
This paper studies the extreme singular values of non-harmonic Fourier matrices. Such a matrix of size $m\times s$ can be written as $\Phi=[ e^{-2\pi i j x_k}]_{j=0,1,\dots,m-1, k=1,2,\dots,s}$ for some set $\mathcal{X}=\{x_k\}_{k=1}^s$. The main results provide explicit lower bounds for the smallest singular value of $\Phi$ under the assumption $m\geq 6s$ and without any restrictions on $\mathcal{X}$. They show that for an appropriate scale $\tau$ determined by a density criteria, interactions between elements in $\mathcal{X}$ at scales smaller than $\tau$ are most significant and depends on the multiscale structure of $\mathcal{X}$ at fine scales, while distances larger than $\tau$ are less important and only depend on the local sparsity of the far away points. Theoretical and numerical comparisons show that the main results significantly improve upon classical bounds and achieve the same rate that was previously discovered for more restrictive settings.
We show that under minimal assumptions on a random vector $X\in\mathbb{R}^d$ and with high probability, given $m$ independent copies of $X$, the coordinate distribution of each vector $(\langle X_i,\theta \rangle)_{i=1}^m$ is dictated by the distribution of the true marginal $\langle X,\theta \rangle$. Specifically, we show that with high probability, \[\sup_{\theta \in S^{d-1}} \left( \frac{1}{m}\sum_{i=1}^m \left|\langle X_i,\theta \rangle^\sharp - \lambda^\theta_i \right|^2 \right)^{1/2} \leq c \left( \frac{d}{m} \right)^{1/4},\] where $\lambda^{\theta}_i = m\int_{(\frac{i-1}{m}, \frac{i}{m}]} F_{ \langle X,\theta \rangle }^{-1}(u)\,du$ and $a^\sharp$ denotes the monotone non-decreasing rearrangement of $a$. Moreover, this estimate is optimal. The proof follows from a sharp estimate on the worst Wasserstein distance between a marginal of $X$ and its empirical counterpart, $\frac{1}{m} \sum_{i=1}^m \delta_{\langle X_i, \theta \rangle}$.
We study the maximum-average submatrix problem, in which given an $N \times N$ matrix $J$ one needs to find the $k \times k$ submatrix with the largest average of entries. We study the problem for random matrices $J$ whose entries are i.i.d. random variables by mapping it to a variant of the Sherrington-Kirkpatrick spin-glass model at fixed magnetization. We characterize analytically the phase diagram of the model as a function of the submatrix average and the size of the submatrix $k$ in the limit $N\to\infty$. We consider submatrices of size $k = m N$ with $0 < m < 1$. We find a rich phase diagram, including dynamical, static one-step replica symmetry breaking and full-step replica symmetry breaking. In the limit of $m \to 0$, we find a simpler phase diagram featuring a frozen 1-RSB phase, where the Gibbs measure is composed of exponentially many pure states each with zero entropy. We discover an interesting phenomenon, reminiscent of the phenomenology of the binary perceptron: there exist efficient algorithms that provably work in the frozen 1-RSB phase.
We propose an approach to compute inner and outer-approximations of the sets of values satisfying constraints expressed as arbitrarily quantified formulas. Such formulas arise for instance when specifying important problems in control such as robustness, motion planning or controllers comparison. We propose an interval-based method which allows for tractable but tight approximations. We demonstrate its applicability through a series of examples and benchmarks using a prototype implementation.