This research pioneers the use of fine-tuned Large Language Models (LLMs) to automate Systematic Literature Reviews (SLRs), presenting a significant and novel contribution in integrating AI to enhance academic research methodologies. Our study employed the latest fine-tuning methodologies together with open-sourced LLMs, and demonstrated a practical and efficient approach to automating the final execution stages of an SLR process that involves knowledge synthesis. The results maintained high fidelity in factual accuracy in LLM responses, and were validated through the replication of an existing PRISMA-conforming SLR. Our research proposed solutions for mitigating LLM hallucination and proposed mechanisms for tracking LLM responses to their sources of information, thus demonstrating how this approach can meet the rigorous demands of scholarly research. The findings ultimately confirmed the potential of fine-tuned LLMs in streamlining various labor-intensive processes of conducting literature reviews. Given the potential of this approach and its applicability across all research domains, this foundational study also advocated for updating PRISMA reporting guidelines to incorporate AI-driven processes, ensuring methodological transparency and reliability in future SLRs. This study broadens the appeal of AI-enhanced tools across various academic and research fields, setting a new standard for conducting comprehensive and accurate literature reviews with more efficiency in the face of ever-increasing volumes of academic studies.
We study the problem of automatically discovering Granger causal relations from observational multivariate time-series data.Vector autoregressive (VAR) models have been time-tested for this problem, including Bayesian variants and more recent developments using deep neural networks. Most existing VAR methods for Granger causality use sparsity-inducing penalties/priors or post-hoc thresholds to interpret their coefficients as Granger causal graphs. Instead, we propose a new Bayesian VAR model with a hierarchical factorised prior distribution over binary Granger causal graphs, separately from the VAR coefficients. We develop an efficient algorithm to infer the posterior over binary Granger causal graphs. Comprehensive experiments on synthetic, semi-synthetic, and climate data show that our method is more uncertainty aware, has less hyperparameters, and achieves better performance than competing approaches, especially in low-data regimes where there are less observations.
In this work, we address the issue of quality of experience (QoE) in unmanned aerial vehicle (UAV) aided multiuser rate-splitting multiple access (RSMA) networks under secrecy constraints. The problem is formulated as maximization of sum mean opinion scores (MOSs) of the users. The problem is decomposed into two subproblems, beamforming and rate allocation and UAV trajectory subproblem. For, beamforming and rate allocation subproblem, we use the epigraph method, property of polynomials, and the norm-bounded error of channels, we linearize the objective function. Then, applying second-order conic (SOC) and first Taylor expansion, we convexify the remaining nonconvex constraints. For the highly nonconvex UAV trajectory, we unroll the constraints and we apply first Taylor expansion on the unrolled constraints. The simulation results demonstrate the efficiency of the proposed framework.
In this paper, we introduce the novel task of Open-domain Urban Itinerary Planning (OUIP), a paradigm designed to generate personalized urban itineraries from user requests articulated in natural language. This approach is different from traditional itinerary planning, which often restricts the granularity of user inputs, thus hindering genuine personalization. To this end, we present ItiNera, an OUIP system that synergizes spatial optimization with large language models (LLMs) to provide services that customize urban itineraries based on users' needs. Upon receiving the user's itinerary request, the LLM first decomposes it into detailed components, identifying key requirements, including preferences and dislikes. Then, we use these specifics to select candidate POIs from a large-scale collection using embedding-based Preference-aware POI Retrieval. Finally, a preference score-based Cluster-aware Spatial Optimization module clusters, filters, and orders these POIs, followed by the LLM for detailed POI selection and organization to craft a personalized, spatially coherent itinerary. Moreover, we created an LLM-based pipeline to update and personalize a user-owned POI database. This ensures up-to-date POI information, supports itinerary planning, pre-trip research, POI collection, recommendations, and more. To the best of our knowledge, this study marks the first integration of LLMs to innovate itinerary planning, with potential extensions for various urban travel and exploration activities. Offline and online evaluations demonstrate the capacity of our system to deliver more responsive, personalized, and spatially coherent itineraries than current solutions. Our system, deployed on an online platform, has attracted thousands of users for their urban travel planning.
This paper presents a nearly tight audit of the Differentially Private Stochastic Gradient Descent (DP-SGD) algorithm in the black-box model. Our auditing procedure empirically estimates the privacy leakage from DP-SGD using membership inference attacks; unlike prior work, the estimates are appreciably close to the theoretical DP bounds. The main intuition is to craft worst-case initial model parameters, as DP-SGD's privacy analysis is agnostic to the choice of the initial model parameters. For models trained with theoretical $\varepsilon=10.0$ on MNIST and CIFAR-10, our auditing procedure yields empirical estimates of $7.21$ and $6.95$, respectively, on 1,000-record samples and $6.48$ and $4.96$ on the full datasets. By contrast, previous work achieved tight audits only in stronger (i.e., less realistic) white-box models that allow the adversary to access the model's inner parameters and insert arbitrary gradients. Our auditing procedure can be used to detect bugs and DP violations more easily and offers valuable insight into how the privacy analysis of DP-SGD can be further improved.
Diffusion models are a powerful class of generative models capable of producing high-quality images from pure noise. In particular, conditional diffusion models allow one to specify the contents of the desired image using a simple text prompt. Conditioning on a text prompt alone, however, does not allow for fine-grained control over the composition and layout of the final image, which instead depends closely on the initial noise distribution. While most methods which introduce spatial constraints (e.g., bounding boxes) require fine-tuning, a smaller and more recent subset of these methods are training-free. They are applicable whenever the prompt influences the model through an attention mechanism, and generally fall into one of two categories. The first entails modifying the cross-attention maps of specific tokens directly to enhance the signal in certain regions of the image. The second works by defining a loss function over the cross-attention maps, and using the gradient of this loss to guide the latent. While previous work explores these as alternative strategies, we provide an interpretation for these methods which highlights their complimentary features, and demonstrate that it is possible to obtain superior performance when both methods are used in concert.
With the advent of Large Language Models (LLMs), the potential of Retrieval Augmented Generation (RAG) techniques have garnered considerable research attention. Numerous novel algorithms and models have been introduced to enhance various aspects of RAG systems. However, the absence of a standardized framework for implementation, coupled with the inherently intricate RAG process, makes it challenging and time-consuming for researchers to compare and evaluate these approaches in a consistent environment. Existing RAG toolkits like LangChain and LlamaIndex, while available, are often heavy and unwieldy, failing to meet the personalized needs of researchers. In response to this challenge, we propose FlashRAG, an efficient and modular open-source toolkit designed to assist researchers in reproducing existing RAG methods and in developing their own RAG algorithms within a unified framework. Our toolkit implements 12 advanced RAG methods and has gathered and organized 32 benchmark datasets. Our toolkit has various features, including customizable modular framework, rich collection of pre-implemented RAG works, comprehensive datasets, efficient auxiliary pre-processing scripts, and extensive and standard evaluation metrics. Our toolkit and resources are available at //github.com/RUC-NLPIR/FlashRAG.
With current state-of-the-art automatic speech recognition (ASR) systems, it is not possible to transcribe overlapping speech audio streams separately. Consequently, when these ASR systems are used as part of a social robot like Pepper for interaction with a human, it is common practice to close the robot's microphone while it is talking itself. This prevents the human users to interrupt the robot, which limits speech-based human-robot interaction. To enable a more natural interaction which allows for such interruptions, we propose an audio processing pipeline for filtering out robot's ego speech using only a single-channel microphone. This pipeline takes advantage of the possibility to feed the robot ego speech signal, generated by a text-to-speech API, as training data into a machine learning model. The proposed pipeline combines a convolutional neural network and spectral subtraction to extract overlapping human speech from the audio recorded by the robot-embedded microphone. When evaluating on a held-out test set, we find that this pipeline outperforms our previous approach to this task, as well as state-of-the-art target speech extraction systems that were retrained on the same dataset. We have also integrated the proposed pipeline into a lightweight robot software development framework to make it available for broader use. As a step towards demonstrating the feasibility of deploying our pipeline, we use this framework to evaluate the effectiveness of the pipeline in a small lab-based feasibility pilot using the social robot Pepper. Our results show that when participants interrupt the robot, the pipeline can extract the participant's speech from one-second streaming audio buffers received by the robot-embedded single-channel microphone, hence in near-real time.
This study investigates the capacity of Large Language Models (LLMs) to infer the Big Five personality traits from free-form user interactions. The results demonstrate that a chatbot powered by GPT-4 can infer personality with moderate accuracy, outperforming previous approaches drawing inferences from static text content. The accuracy of inferences varied across different conversational settings. Performance was highest when the chatbot was prompted to elicit personality-relevant information from users (mean r=.443, range=[.245, .640]), followed by a condition placing greater emphasis on naturalistic interaction (mean r=.218, range=[.066, .373]). Notably, the direct focus on personality assessment did not result in a less positive user experience, with participants reporting the interactions to be equally natural, pleasant, engaging, and humanlike across both conditions. A chatbot mimicking ChatGPT's default behavior of acting as a helpful assistant led to markedly inferior personality inferences and lower user experience ratings but still captured psychologically meaningful information for some of the personality traits (mean r=.117, range=[-.004, .209]). Preliminary analyses suggest that the accuracy of personality inferences varies only marginally across different socio-demographic subgroups. Our results highlight the potential of LLMs for psychological profiling based on conversational interactions. We discuss practical implications and ethical challenges associated with these findings.
This work investigates the use of a Deep Neural Network (DNN) to perform an estimation of the Weapon Engagement Zone (WEZ) maximum launch range. The WEZ allows the pilot to identify an airspace in which the available missile has a more significant probability of successfully engaging a particular target, i.e., a hypothetical area surrounding an aircraft in which an adversary is vulnerable to a shot. We propose an approach to determine the WEZ of a given missile using 50,000 simulated launches in variate conditions. These simulations are used to train a DNN that can predict the WEZ when the aircraft finds itself on different firing conditions, with a coefficient of determination of 0.99. It provides another procedure concerning preceding research since it employs a non-discretized model, i.e., it considers all directions of the WEZ at once, which has not been done previously. Additionally, the proposed method uses an experimental design that allows for fewer simulation runs, providing faster model training.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.