亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

English as foreign language_EFL_students' use of text generated from artificial intelligence_AI_natural language generation_NLG_tools may improve their writing quality. However, it remains unclear to what extent AI-generated text in these students' writing might lead to higher-quality writing. We explored 23 Hong Kong secondary school students' attempts to write stories comprising their own words and AI-generated text. Human experts scored the stories for dimensions of content, language and organization. We analyzed the basic organization and structure and syntactic complexity of the stories' AI-generated text and performed multiple linear regression and cluster analyses. The results show the number of human words and the number of AI-generated words contribute significantly to scores. Besides, students can be grouped into competent and less competent writers who use more AI-generated text or less AI-generated text compared to their peers. Comparisons of clusters reveal some benefit of AI-generated text in improving the quality of both high-scoring students' and low-scoring students' writing. The findings can inform pedagogical strategies to use AI-generated text for EFL students' writing and to address digital divides. This study contributes designs of NLG tools and writing activities to implement AI-generated text in schools.

相關內容

Work on instruction-tuned Large Language Models (LLMs) has used automatic methods based on text overlap and LLM judgments as cost-effective alternatives to human evaluation. In this paper, we study the reliability of such methods across a broad range of tasks and in a cross-lingual setting. In contrast to previous findings, we observe considerable variability in correlations between automatic methods and human evaluators when scores are differentiated by task type. Specifically, the widely-used ROUGE-L metric strongly correlates with human judgments for short-answer English tasks but is unreliable in free-form generation tasks and cross-lingual transfer. The effectiveness of GPT-4 as an evaluator depends on including reference answers when prompting for assessments, which can lead to overly strict evaluations in free-form generation tasks. In summary, we find that, while automatic evaluation methods can approximate human judgements under specific conditions, their reliability is highly context-dependent. Our findings enhance the understanding of how automatic methods should be applied and interpreted when developing and evaluating instruction-tuned LLMs.

Chain-of-thought (CoT) prompting is a simple and effective method for improving the reasoning capabilities of Large language models (LLMs). The basic idea of CoT is to let LLMs break down their thought processes step-by-step by putting exemplars in the input prompt. However, the densely structured prompt exemplars of CoT may cause the cognitive overload of LLMs. Inspired by human cognition, we introduce CoT-Sep, a novel method that strategically employs separators at the end of each exemplar in CoT prompting. These separators are designed to help the LLMs understand their thought processes better while reasoning. It turns out that CoT-Sep significantly improves the LLMs' performances on complex reasoning tasks (e.g., GSM-8K, AQuA, CSQA), compared with the vanilla CoT, which does not use separators. We also study the effects of the type and the location of separators tested on multiple LLMs, including GPT-3.5-Turbo, GPT-4, and LLaMA-2 7B. Interestingly, the type/location of separators should be chosen appropriately to boost the reasoning capability of CoT.

Recent work shows that in-context learning and optimization of in-context examples (ICE) can significantly improve the accuracy of large language models (LLMs) on a wide range of tasks, leading to an apparent consensus that ICE optimization is crucial for better performance. However, most of these studies assume a fixed or no instruction provided in the prompt. We challenge this consensus by investigating the necessity of optimizing ICE when task-specific instructions are provided and find that there are tasks for which it yields diminishing returns. In particular, using a diverse set of tasks and a systematically created instruction set with gradually added details, we find that as the prompt instruction becomes more detailed, the returns on ICE optimization diminish. To characterize this behavior, we introduce a task-specific metric called Normalized Invariability to Choice of Examples (NICE) that quantifies the learnability of tasks from a given instruction, and provides a heuristic that helps decide whether to optimize instructions or ICE for a new task. Given a task, the proposed metric can reliably predict the utility of optimizing ICE compared to using random ICE.

Chain-of-Thought (CoT) prompting has marked a significant advancement in enhancing the reasoning capabilities of large language models (LLMs). Previous studies have developed various extensions of CoT, which focus primarily on enhancing end-task performance. In addition, there has been research on assessing the quality of reasoning chains in CoT. This raises an intriguing question: Is it possible to predict the accuracy of LLM outputs by scrutinizing the reasoning chains they generate? To answer this research question, we introduce a benchmark, R2PE, designed specifically to explore the relationship between reasoning chains and performance in various reasoning tasks spanning five different domains. This benchmark aims to measure the falsehood of the final output of LLMs based on the reasoning steps. To make full use of information in multiple reasoning chains, we propose the process discernibility score (PDS) framework that beats the answer-checking baseline by a large margin. Concretely, this resulted in an average of 5.1% increase in the F1 score across all 45 subsets within R2PE. We further demonstrate our PDS's efficacy in advancing open-domain QA accuracy. Data and code are available at //github.com/XinXU-USTC/R2PE.

This paper presents an optimization approach for cooperative Medium Access Control (MAC) techniques in Vehicular Ad Hoc Networks (VANETs) equipped with Roadside Unit (RSU) to enhance network throughput. Our method employs a distributed cooperative MAC scheme based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol, featuring selective RSU probing and adaptive transmission. It utilizes a dual timescale channel access framework, with a ``large-scale'' phase accounting for gradual changes in vehicle locations and a ``small-scale'' phase adapting to rapid channel fluctuations. We propose the RSU Probing and Cooperative Access (RPCA) strategy, a two-stage approach based on dynamic inter-vehicle distances from the RSU. Using optimal sequential planned decision theory, we rigorously prove its optimality in maximizing average system throughput per large-scale phase. For practical implementation in VANETs, we develop a distributed MAC algorithm with periodic location updates. It adjusts thresholds based on inter-vehicle and vehicle-RSU distances during the large-scale phase and accesses channels following the RPCA strategy with updated thresholds during the small-scale phase. Simulation results confirm the effectiveness and efficiency of our algorithm.

In the field of robotics and automation, navigation systems based on Large Language Models (LLMs) have recently shown impressive performance. However, the security aspects of these systems have received relatively less attention. This paper pioneers the exploration of vulnerabilities in LLM-based navigation models in urban outdoor environments, a critical area given the technology's widespread application in autonomous driving, logistics, and emergency services. Specifically, we introduce a novel Navigational Prompt Suffix (NPS) Attack that manipulates LLM-based navigation models by appending gradient-derived suffixes to the original navigational prompt, leading to incorrect actions. We conducted comprehensive experiments on an LLMs-based navigation model that employs various LLMs for reasoning. Our results, derived from the Touchdown and Map2Seq street-view datasets under both few-shot learning and fine-tuning configurations, demonstrate notable performance declines across three metrics in the face of both white-box and black-box attacks. These results highlight the generalizability and transferability of the NPS Attack, emphasizing the need for enhanced security in LLM-based navigation systems. As an initial countermeasure, we propose the Navigational Prompt Engineering (NPE) Defense strategy, concentrating on navigation-relevant keywords to reduce the impact of adversarial suffixes. While initial findings indicate that this strategy enhances navigational safety, there remains a critical need for the wider research community to develop stronger defense methods to effectively tackle the real-world challenges faced by these systems.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.

A sememe is defined as the minimum semantic unit of human languages. Sememe knowledge bases (KBs), which contain words annotated with sememes, have been successfully applied to many NLP tasks. However, existing sememe KBs are built on only a few languages, which hinders their widespread utilization. To address the issue, we propose to build a unified sememe KB for multiple languages based on BabelNet, a multilingual encyclopedic dictionary. We first build a dataset serving as the seed of the multilingual sememe KB. It manually annotates sememes for over $15$ thousand synsets (the entries of BabelNet). Then, we present a novel task of automatic sememe prediction for synsets, aiming to expand the seed dataset into a usable KB. We also propose two simple and effective models, which exploit different information of synsets. Finally, we conduct quantitative and qualitative analyses to explore important factors and difficulties in the task. All the source code and data of this work can be obtained on //github.com/thunlp/BabelNet-Sememe-Prediction.

Language model pre-training has proven to be useful in learning universal language representations. As a state-of-the-art language model pre-training model, BERT (Bidirectional Encoder Representations from Transformers) has achieved amazing results in many language understanding tasks. In this paper, we conduct exhaustive experiments to investigate different fine-tuning methods of BERT on text classification task and provide a general solution for BERT fine-tuning. Finally, the proposed solution obtains new state-of-the-art results on eight widely-studied text classification datasets.

北京阿比特科技有限公司