亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With their increasing size, large language models (LLMs) are becoming increasingly good at language understanding tasks. But even with high performance on specific downstream task, LLMs fail at simple linguistic tests for negation or quantifier understanding. Previous work on quantifier understanding in LLMs show inverse scaling in understanding few-type quantifiers. In this paper, we question the claims of of previous work and show that it is a result of inappropriate testing methodology. We also present alternate methods to measure quantifier comprehension in LLMs and show that LLMs are able to better understand the difference between the meaning of few-type and most-type quantifiers as their size increases, although they are not particularly good at it. We also observe inverse scaling for most-type quantifier understanding, which is contrary to human psycho-linguistic experiments and previous work, where the model's understanding of most-type quantifier gets worse as the model size increases. We do this evaluation on models ranging from 125M-175B parameters, which suggests that LLMs do not do as well as expected with quantifiers. We also discuss the possible reasons for this and the relevance of quantifier understanding in evaluating language understanding in LLMs.

相關內容

Increasing the context length of large language models (LLMs) unlocks fundamentally new capabilities, but also significantly increases the memory footprints of training. Previous model-parallel systems such as Megatron-LM partition and compute different attention heads in parallel, resulting in large communication volumes, so they cannot scale beyond the number of attention heads, thereby hindering its adoption. In this paper, we introduce a new approach, LightSeq, for long-context LLMs training. LightSeq has many notable advantages. First, LightSeq partitions over the sequence dimension, hence is agnostic to model architectures and readily applicable for models with varying numbers of attention heads, such as Multi-Head, Multi-Query and Grouped-Query attention. Second, LightSeq not only requires up to 4.7x less communication than Megatron-LM on popular LLMs but also overlaps the communication with computation. To further reduce the training time, LightSeq features a novel gradient checkpointing scheme to bypass an forward computation for memory-efficient attention. We evaluate LightSeq on Llama-7B and its variants with sequence lengths from 32K to 512K. Through comprehensive experiments on single and cross-node training, we show that LightSeq achieves up to 1.24-2.01x end-to-end speedup, and a 2-8x longer sequence length on models with fewer heads, compared to Megatron-LM. Codes will be available at //github.com/RulinShao/LightSeq.

Computation in a typical Transformer-based large language model (LLM) can be characterized by batch size, hidden dimension, number of layers, and sequence length. Until now, system works for accelerating LLM training have focused on the first three dimensions: data parallelism for batch size, tensor parallelism for hidden size and pipeline parallelism for model depth or layers. These widely studied forms of parallelism are not targeted or optimized for long sequence Transformer models. Given practical application needs for long sequence LLM, renewed attentions are being drawn to sequence parallelism. However, existing works in sequence parallelism are constrained by memory-communication inefficiency, limiting their scalability to long sequence large models. In this work, we introduce DeepSpeed-Ulysses, a novel, portable and effective methodology for enabling highly efficient and scalable LLM training with extremely long sequence length. DeepSpeed-Ulysses at its core partitions input data along the sequence dimension and employs an efficient all-to-all collective communication for attention computation. Theoretical communication analysis shows that whereas other methods incur communication overhead as sequence length increases, DeepSpeed-Ulysses maintains constant communication volume when sequence length and compute devices are increased proportionally. Furthermore, experimental evaluations show that DeepSpeed-Ulysses trains 2.5x faster with 4x longer sequence length than the existing method SOTA baseline.

Large language models (LLMs), known for their capability in understanding and following instructions, are vulnerable to adversarial attacks. Researchers have found that current commercial LLMs either fail to be "harmless" by presenting unethical answers, or fail to be "helpful" by refusing to offer meaningful answers when faced with adversarial queries. To strike a balance between being helpful and harmless, we design a moving target defense (MTD) enhanced LLM system. The system aims to deliver non-toxic answers that align with outputs from multiple model candidates, making them more robust against adversarial attacks. We design a query and output analysis model to filter out unsafe or non-responsive answers. %to achieve the two objectives of randomly selecting outputs from different LLMs. We evaluate over 8 most recent chatbot models with state-of-the-art adversarial queries. Our MTD-enhanced LLM system reduces the attack success rate from 37.5\% to 0\%. Meanwhile, it decreases the response refusal rate from 50\% to 0\%.

With the emergence of generative conversational large language models (LLMs) like ChatGPT, serving as virtual assistants in various fields, the stability and reliability of their responses have become crucial. However, during usage, it has been observed that these models tend to waver in their judgements when confronted with follow-up questions from users expressing skepticism or disagreement. In this work, we draw inspiration from questioning strategies in education and propose a \textsc{Follow-up Questioning Mechanism} along with two evaluation metrics to assess the judgement consistency of LLMs before and after exposure to disturbances. We evaluate the judgement consistency of ChatGPT, PaLM2-Bison, and Vicuna-13B under this mechanism across eight reasoning benchmarks. Empirical results show that even when the initial answers are correct, judgement consistency sharply decreases when LLMs face disturbances such as questioning, negation, or misleading. Additionally, we study these models' judgement consistency under various settings (sampling temperature and prompts) to validate this issue further, observing the impact of prompt tone and conducting an in-depth error analysis for deeper behavioral insights. Furthermore, we also explore several prompting methods to mitigate this issue and demonstrate their effectiveness\footnote{\url{//github.com/NUSTM/LLMs-Waver-In-Judgements}}.

By providing external information to large language models (LLMs), tool augmentation (including retrieval augmentation) has emerged as a promising solution for addressing the limitations of LLMs' static parametric memory. However, how receptive are LLMs to such external evidence, especially when the evidence conflicts with their parametric memory? We present the first comprehensive and controlled investigation into the behavior of LLMs when encountering knowledge conflicts. We propose a systematic framework to elicit high-quality parametric memory from LLMs and construct the corresponding counter-memory, which enables us to conduct a series of controlled experiments. Our investigation reveals seemingly contradicting behaviors of LLMs. On the one hand, different from prior wisdom, we find that LLMs can be highly receptive to external evidence even when that conflicts with their parametric memory, given that the external evidence is coherent and convincing. On the other hand, LLMs also demonstrate a strong confirmation bias when the external evidence contains some information that is consistent with their parametric memory, despite being presented with conflicting evidence at the same time. These results pose important implications that are worth careful consideration for the further development and deployment of tool- and retrieval-augmented LLMs.

We investigated the potential of large language models (LLMs) in developing dataset validation tests. We carried out 96 experiments each for both GPT-3.5 and GPT-4, examining different prompt scenarios, learning modes, temperature settings, and roles. The prompt scenarios were: 1) Asking for expectations, 2) Asking for expectations with a given context, 3) Asking for expectations after requesting a simulation, and 4) Asking for expectations with a provided data sample. For learning modes, we tested: 1) zero-shot, 2) one-shot, and 3) few-shot learning. We also tested four temperature settings: 0, 0.4, 0.6, and 1. Furthermore, two distinct roles were considered: 1) "helpful assistant", 2) "expert data scientist". To gauge consistency, every setup was tested five times. The LLM-generated responses were benchmarked against a gold standard suite, created by an experienced data scientist knowledgeable about the data in question. We find there are considerable returns to the use of few-shot learning, and that the more explicit the data setting can be the better. The best LLM configurations complement, rather than substitute, the gold standard results. This study underscores the value LLMs can bring to the data cleaning and preparation stages of the data science workflow.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.

Pre-trained language models (PLMs) have been the de facto paradigm for most natural language processing (NLP) tasks. This also benefits biomedical domain: researchers from informatics, medicine, and computer science (CS) communities propose various PLMs trained on biomedical datasets, e.g., biomedical text, electronic health records, protein, and DNA sequences for various biomedical tasks. However, the cross-discipline characteristics of biomedical PLMs hinder their spreading among communities; some existing works are isolated from each other without comprehensive comparison and discussions. It expects a survey that not only systematically reviews recent advances of biomedical PLMs and their applications but also standardizes terminology and benchmarks. In this paper, we summarize the recent progress of pre-trained language models in the biomedical domain and their applications in biomedical downstream tasks. Particularly, we discuss the motivations and propose a taxonomy of existing biomedical PLMs. Their applications in biomedical downstream tasks are exhaustively discussed. At last, we illustrate various limitations and future trends, which we hope can provide inspiration for the future research of the research community.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

北京阿比特科技有限公司