We investigated the potential of large language models (LLMs) in developing dataset validation tests. We carried out 96 experiments each for both GPT-3.5 and GPT-4, examining different prompt scenarios, learning modes, temperature settings, and roles. The prompt scenarios were: 1) Asking for expectations, 2) Asking for expectations with a given context, 3) Asking for expectations after requesting a simulation, and 4) Asking for expectations with a provided data sample. For learning modes, we tested: 1) zero-shot, 2) one-shot, and 3) few-shot learning. We also tested four temperature settings: 0, 0.4, 0.6, and 1. Furthermore, two distinct roles were considered: 1) "helpful assistant", 2) "expert data scientist". To gauge consistency, every setup was tested five times. The LLM-generated responses were benchmarked against a gold standard suite, created by an experienced data scientist knowledgeable about the data in question. We find there are considerable returns to the use of few-shot learning, and that the more explicit the data setting can be the better. The best LLM configurations complement, rather than substitute, the gold standard results. This study underscores the value LLMs can bring to the data cleaning and preparation stages of the data science workflow.
A popular approach for improving the correctness of output from large language models (LLMs) is Self-Consistency - poll the LLM multiple times and output the most frequent solution. Existing Self-Consistency techniques always generate a constant number of samples per question, where a better approach will be to non-uniformly distribute the available budget based on the amount of agreement in the samples generated so far. In response, we introduce Adaptive-Consistency, a cost-efficient, model-agnostic technique that dynamically adjusts the number of samples per question using a lightweight stopping criterion. Our experiments over 17 reasoning and code generation datasets and three LLMs demonstrate that Adaptive-Consistency reduces sample budget by up to 7.9 times with an average accuracy drop of less than 0.1%. Our code and data are available at //www.sample-step-by-step.info
The effective assessment of the instruction-following ability of large language models (LLMs) is of paramount importance. A model that cannot adhere to human instructions might be not able to provide reliable and helpful responses. In pursuit of this goal, various benchmarks have been constructed to evaluate the instruction-following capacity of these models. However, these benchmarks are limited to a single language and are constructed using automated approaches, which restricts their applicability and the quality of the test examples they contain. To bridge this gap, we introduce the FollowEval benchmark in this paper. This benchmark is composed of instances in both English and Chinese, and all test examples are crafted by human experts. Furthermore, the FollowEval benchmark is designed to assess LLMs across five critical dimensions of instruction following: string manipulation, commonsense reasoning, logical reasoning, spatial reasoning, and response constraints. To enhance the complexity and present a sufficient challenge, each test example is designed to evaluate more than one dimension. We have evaluated various LLMs using the FollowEval benchmark and found that their performance significantly lags behind that of humans. This highlights the considerable room for improvement in the instruction-following ability of these models.
Recent studies have highlighted a phenomenon in large language models (LLMs) known as "the reversal curse," in which the order of knowledge entities in the training data biases the models' comprehension. For example, if a model is trained on sentences where entity A consistently appears before entity B, it can respond to queries about A by providing B as the answer. However, it may encounter confusion when presented with questions concerning B. We contend that the reversal curse is partially a result of specific model training objectives, particularly evident in the prevalent use of the next-token prediction within most causal language models. For the next-token prediction, models solely focus on a token's preceding context, resulting in a restricted comprehension of the input. In contrast, we illustrate that the GLM, trained using the autoregressive blank infilling objective where tokens to be predicted have access to the entire context, exhibits better resilience against the reversal curse. We propose a novel training method, BIdirectional Casual language modeling Optimization (BICO), designed to mitigate the reversal curse when fine-tuning pretrained causal language models on new data. BICO modifies the causal attention mechanism to function bidirectionally and employs a mask denoising optimization. In the task designed to assess the reversal curse, our approach improves Llama's accuracy from the original 0% to around 70%. We hope that more attention can be focused on exploring and addressing these inherent weaknesses of the current LLMs, in order to achieve a higher level of intelligence.
While large language models (LLMs) already achieve strong performance on standard generic summarization benchmarks, their performance on more complex summarization task settings is less studied. Therefore, we benchmark LLMs on instruction controllable text summarization, where the model input consists of both a source article and a natural language requirement for the desired summary characteristics. To this end, we curate an evaluation-only dataset for this task setting and conduct human evaluation on 5 LLM-based summarization systems. We then benchmark LLM-based automatic evaluation for this task with 4 different evaluation protocols and 11 LLMs, resulting in 40 evaluation methods in total. Our study reveals that instruction controllable text summarization remains a challenging task for LLMs, since (1) all LLMs evaluated still make factual and other types of errors in their summaries; (2) all LLM-based evaluation methods cannot achieve a strong alignment with human annotators when judging the quality of candidate summaries; (3) different LLMs show large performance gaps in summary generation and evaluation. We make our collected benchmark, InstruSum, publicly available to facilitate future research in this direction.
Language models (LMs) have demonstrated remarkable capabilities across a wide range of tasks in various domains. Despite their impressive performance, the reliability of their output is concerning and questionable regarding the demand for AI safety. Assessing the confidence of LM predictions and calibrating them across different tasks with the aim to align LM confidence with accuracy can help mitigate risks and enable LMs to make better decisions. There have been various works in this respect, but there has been no comprehensive overview of this important research area. The present survey aims to bridge this gap. In particular, we discuss methods and techniques for LM confidence estimation and calibration, encompassing different LMs and various tasks. We further outline the challenges of estimating the confidence for large language models and we suggest some promising directions for future work.
Existing bounds on the generalization error of deep networks assume some form of smooth or bounded dependence on the input variable, falling short of investigating the mechanisms controlling such factors in practice. In this work, we present an extensive experimental study of the empirical Lipschitz constant of deep networks undergoing double descent, and highlight non-monotonic trends strongly correlating with the test error. Building a connection between parameter-space and input-space gradients for SGD around a critical point, we isolate two important factors -- namely loss landscape curvature and distance of parameters from initialization -- respectively controlling optimization dynamics around a critical point and bounding model function complexity, even beyond the training data. Our study presents novels insights on implicit regularization via overparameterization, and effective model complexity for networks trained in practice.
Logical reasoning has been an ongoing pursuit in the field of AI. Despite significant advancements made by large language models (LLMs), they still struggle with complex logical reasoning problems. To enhance reasoning performance, one promising direction is scalable oversight, which requires LLMs to identify their own errors and then improve by themselves. Various self-verification methods have been proposed in pursuit of this goal. Nevertheless, whether existing models understand their own errors well is still under investigation. In this paper, we take a closer look at the self-verification abilities of LLMs in the context of logical reasoning, focusing on their ability to identify logical fallacies accurately. We introduce a dataset, FALLACIES, containing 232 types of reasoning fallacies categorized in a hierarchical taxonomy. By conducting exhaustive experiments on FALLACIES, we obtain comprehensive and detailed analyses of a series of models on their verification abilities. Our main findings suggest that existing LLMs could struggle to identify fallacious reasoning steps accurately and may fall short of guaranteeing the validity of self-verification methods. Drawing from these observations, we offer suggestions for future research and practical applications of self-verification methods.
Large language models (LLMs) have demonstrated unparalleled prowess in mimicking human-like text generation and processing. Among the myriad of applications that benefit from LLMs, automated code generation is increasingly promising. The potential to transform natural language prompts into executable code promises a major shift in software development practices and paves the way for significant reductions in manual coding efforts and the likelihood of human-induced errors. This paper reports the results of a study that evaluates the performance of various LLMs, such as Bard, ChatGPT-3.5, ChatGPT-4, and Claude-2, in generating Python for coding problems. We focus on how levels of prompt specificity impact the accuracy, time efficiency, and space efficiency of the generated code. A benchmark of 104 coding problems, each with four types of prompts with varying degrees of tests and specificity, was employed to examine these aspects comprehensively. Our results indicate significant variations in performance across different LLMs and prompt types, and its key contribution is to reveal the ideal prompting strategy for creating accurate Python functions. This study lays the groundwork for further research in LLM capabilities and suggests practical implications for utilizing LLMs in automated code generation tasks and test-driven development.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.