We study the problem of performing face verification with an efficient neural model $f$. The efficiency of $f$ stems from simplifying the face verification problem from an embedding nearest neighbor search into a binary problem; each user has its own neural network $f$. To allow information sharing between different individuals in the training set, we do not train $f$ directly but instead generate the model weights using a hypernetwork $h$. This leads to the generation of a compact personalized model for face identification that can be deployed on edge devices. Key to the method's success is a novel way of generating hard negatives and carefully scheduling the training objectives. Our model leads to a substantially small $f$ requiring only 23k parameters and 5M floating point operations (FLOPS). We use six face verification datasets to demonstrate that our method is on par or better than state-of-the-art models, with a significantly reduced number of parameters and computational burden. Furthermore, we perform an extensive ablation study to demonstrate the importance of each element in our method.
We prove the completeness of a first-order analogue of the Fischer Servi logic $\mathsf{FS}$ with respect to its expected birelational semantics. To this end we introduce the notion of the $\textit{trace model}$ and, much like in a canonical model argument, prove a truth lemma. We conclude by examining a number of other first-order Fischer Servi logics, including the first-order analogue of $\mathsf{FSS4}$, whose completeness can be similarly proved.
This paper introduces a novel physical-layer method labelled as Multi-Modal Concurrent Transmission (MMCT) for efficient transmission of multiple data streams with different reliability-latency performance requirements. The MMCT arranges data from multiple streams within a same physical-layer transport block wherein stream-specific modulation and coding scheme (MCS) selection is combined with joint mapping of modulated codewords to Multiple-Input Multiple-Output spatial layers and frequency resources. Mapping to spatial-frequency resources with higher Signal-to-Noise Ratios (SNRs) provides the required performance boost for the more demanding streams. In tactile internet applications, wherein haptic feedback/actuation and audio-video streams flow in parallel, the method provides significant SNR and spectral efficiency enhancements compared to conventional 3GPP New Radio (NR) transmission methods.
We present a novel approach to enhance the capabilities of VQ-VAE models through the integration of a Residual Encoder and a Residual Pixel Attention layer, named Attentive Residual Encoder (AREN). The objective of our research is to improve the performance of VQ-VAE while maintaining practical parameter levels. The AREN encoder is designed to operate effectively at multiple levels, accommodating diverse architectural complexities. The key innovation is the integration of an inter-pixel auto-attention mechanism into the AREN encoder. This approach allows us to efficiently capture and utilize contextual information across latent vectors. Additionally, our models uses additional encoding levels to further enhance the model's representational power. Our attention layer employs a minimal parameter approach, ensuring that latent vectors are modified only when pertinent information from other pixels is available. Experimental results demonstrate that our proposed modifications lead to significant improvements in data representation and generation, making VQ-VAEs even more suitable for a wide range of applications as the presented.
Recent advancements in meta-learning have enabled the automatic discovery of novel reinforcement learning algorithms parameterized by surrogate objective functions. To improve upon manually designed algorithms, the parameterization of this learned objective function must be expressive enough to represent novel principles of learning (instead of merely recovering already established ones) while still generalizing to a wide range of settings outside of its meta-training distribution. However, existing methods focus on discovering objective functions that, like many widely used objective functions in reinforcement learning, do not take into account the total number of steps allowed for training, or "training horizon". In contrast, humans use a plethora of different learning objectives across the course of acquiring a new ability. For instance, students may alter their studying techniques based on the proximity to exam deadlines and their self-assessed capabilities. This paper contends that ignoring the optimization time horizon significantly restricts the expressive potential of discovered learning algorithms. We propose a simple augmentation to two existing objective discovery approaches that allows the discovered algorithm to dynamically update its objective function throughout the agent's training procedure, resulting in expressive schedules and increased generalization across different training horizons. In the process, we find that commonly used meta-gradient approaches fail to discover such adaptive objective functions while evolution strategies discover highly dynamic learning rules. We demonstrate the effectiveness of our approach on a wide range of tasks and analyze the resulting learned algorithms, which we find effectively balance exploration and exploitation by modifying the structure of their learning rules throughout the agent's lifetime.
Dataset distillation methods reduce large-scale datasets to smaller sets of synthetic data, which preserve sufficient information for quickly training a new model from scratch. However, prior work on dataset distillation has focused exclusively on image classification datasets, whereas modern large-scale datasets are primarily in the vision-language space. In this work, we design the first vision-language dataset distillation method, building on the idea of trajectory matching. A key challenge is that vision-language datasets do not have a set of discrete classes. To overcome this, our proposed method jointly distills the image-text pairs in a contrastive formulation. Further, we leverage Low-Rank Adaptation (LoRA) matching to enable more efficient and effective trajectory matching in complex modern vision-language models. Since there are no existing baselines, we compare our distillation approach to three adapted vision-language coreset selection methods. We demonstrate significant improvements on the challenging Flickr30K and COCO retrieval benchmarks: for example, on Flickr30K, the best coreset selection method selecting 1000 image-text pairs for training achieves only 5.6% image-to-text retrieval accuracy (i.e., recall@1); in contrast, our dataset distillation approach almost doubles that to 9.9% with just 100 (an order of magnitude fewer) training pairs.
We explore asynchronous programming with algebraic effects. We complement their conventional synchronous treatment by showing how to naturally also accommodate asynchrony within them, namely, by decoupling the execution of operation calls into signalling that an operation's implementation needs to be executed, and interrupting a running computation with the operation's result, to which the computation can react by installing interrupt handlers. We formalise these ideas in a small core calculus and demonstrate its flexibility using examples ranging from a multi-party web application, to pre-emptive multi-threading, to (cancellable) remote function calls, to a parallel variant of runners of algebraic effects. In addition, the paper is accompanied by a formalisation of the calculus's type safety proofs in Agda, and a prototype implementation in OCaml.
New algorithms for embedding graphs have reduced the asymptotic complexity of finding low-dimensional representations. One-Hot Graph Encoder Embedding (GEE) uses a single, linear pass over edges and produces an embedding that converges asymptotically to the spectral embedding. The scaling and performance benefits of this approach have been limited by a serial implementation in an interpreted language. We refactor GEE into a parallel program in the Ligra graph engine that maps functions over the edges of the graph and uses lock-free atomic instrutions to prevent data races. On a graph with 1.8B edges, this results in a 500 times speedup over the original implementation and a 17 times speedup over a just-in-time compiled version.
Symbolic regression (SR) searches for analytical expressions representing the relationship between a set of explanatory and response variables. Current SR methods assume a single dataset extracted from a single experiment. Nevertheless, frequently, the researcher is confronted with multiple sets of results obtained from experiments conducted with different setups. Traditional SR methods may fail to find the underlying expression since the parameters of each experiment can be different. In this work we present Multi-View Symbolic Regression (MvSR), which takes into account multiple datasets simultaneously, mimicking experimental environments, and outputs a general parametric solution. This approach fits the evaluated expression to each independent dataset and returns a parametric family of functions f(x; \theta) simultaneously capable of accurately fitting all datasets. We demonstrate the effectiveness of MvSR using data generated from known expressions, as well as real-world data from astronomy, chemistry and economy, for which an a priori analytical expression is not available. Results show that MvSR obtains the correct expression more frequently and is robust to hyperparameters change. In real-world data, it is able to grasp the group behaviour, recovering known expressions from the literature as well as promising alternatives, thus enabling the use SR to a large range of experimental scenarios.
We propose GAN-Supervised Learning, a framework for learning discriminative models and their GAN-generated training data jointly end-to-end. We apply our framework to the dense visual alignment problem. Inspired by the classic Congealing method, our GANgealing algorithm trains a Spatial Transformer to map random samples from a GAN trained on unaligned data to a common, jointly-learned target mode. We show results on eight datasets, all of which demonstrate our method successfully aligns complex data and discovers dense correspondences. GANgealing significantly outperforms past self-supervised correspondence algorithms and performs on-par with (and sometimes exceeds) state-of-the-art supervised correspondence algorithms on several datasets -- without making use of any correspondence supervision or data augmentation and despite being trained exclusively on GAN-generated data. For precise correspondence, we improve upon state-of-the-art supervised methods by as much as $3\times$. We show applications of our method for augmented reality, image editing and automated pre-processing of image datasets for downstream GAN training.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.