亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Independent learners are learning agents that naively employ single-agent learning algorithms in multi-agent systems, intentionally ignoring the effect of other strategic agents present in their environment. This paper studies $N$-player mean-field games from a decentralized learning perspective with two primary objectives: (i) to study the convergence properties of independent learners, and (ii) to identify structural properties of $N$-player mean-field games that can guide algorithm design. Toward the first objective, we study the learning iterates obtained by independent learners, and we use recent results from POMDP theory to show that these iterates converge under mild conditions. In particular, we consider four information structures corresponding to information at each agent: (1) global state + local action; (2) local state, mean-field state + local action; (3) local state, compressed mean-field state + local action; (4) local state with local action. We present a notion of subjective equilibrium suitable for the analysis of independent learners. Toward the second objective, we study a family of dynamical systems on the set of joint policies. The dynamical systems under consideration are subject to a so-called $\epsilon$-satisficing condition: agents who are subjectively $\epsilon$-best-responding at a given joint policy do not change their policy. We establish a useful structural property relating to such dynamical systems. Finally, we develop an independent learning algorithm for $N$-player mean-field games that drives play to subjective $\epsilon$-equilibrium under self-play, exploiting the aforementioned structural properties to guarantee convergence of policies. Notably, we avoid requiring agents to follow the same policy (via a representative agent) during the learning process, which has been the typical approach in the existing literature on learning for mean-field games.

相關內容

Integrated information theory (IIT) is a theoretical framework that provides a quantitative measure to estimate when a physical system is conscious, its degree of consciousness, and the complexity of the qualia space that the system is experiencing. Formally, IIT rests on the assumption that if a surrogate physical system can fully embed the phenomenological properties of consciousness, then the system properties must be constrained by the properties of the qualia being experienced. Following this assumption, IIT represents the physical system as a network of interconnected elements that can be thought of as a probabilistic causal graph, $\mathcal{G}$, where each node has an input-output function and all the graph is encoded in a transition probability matrix. Consequently, IIT's quantitative measure of consciousness, $\Phi$, is computed with respect to the transition probability matrix and the present state of the graph. In this paper, we provide a random search algorithm that is able to optimize $\Phi$ in order to investigate, as the number of nodes increases, the structure of the graphs that have higher $\Phi$. We also provide arguments that show the difficulties of applying more complex black-box search algorithms, such as Bayesian optimization or metaheuristics, in this particular problem. Additionally, we suggest specific research lines for these techniques to enhance the search algorithm that guarantees maximal $\Phi$.

Linear temporal logic (LTL) is a widely-used task specification language which has a compositional grammar that naturally induces temporally extended behaviours across tasks, including conditionals and alternative realizations. An important problem i RL with LTL tasks is to learn task-conditioned policies which can zero-shot generalize to new LTL instructions not observed in the training. However, because symbolic observation is often lossy and LTL tasks can have long time horizon, previous works can suffer from issues such as training sampling inefficiency and infeasibility or sub-optimality of the found solutions. In order to tackle these issues, this paper proposes a novel multi-task RL algorithm with improved learning efficiency and optimality. To achieve the global optimality of task completion, we propose to learn options dependent on the future subgoals via a novel off-policy approach. In order to propagate the rewards of satisfying future subgoals back more efficiently, we propose to train a multi-step value function conditioned on the subgoal sequence which is updated with Monte Carlo estimates of multi-step discounted returns. In experiments on three different domains, we evaluate the LTL generalization capability of the agent trained by the proposed method, showing its advantage over previous representative methods.

End-to-end generative methods are considered a more promising solution for image restoration in physics-based vision compared with the traditional deconstructive methods based on handcrafted composition models. However, existing generative methods still have plenty of room for improvement in quantitative performance. More crucially, these methods are considered black boxes due to weak interpretability and there is rarely a theory trying to explain their mechanism and learning process. In this study, we try to re-interpret these generative methods for image restoration tasks using information theory. Different from conventional understanding, we analyzed the information flow of these methods and identified three sources of information (extracted high-level information, retained low-level information, and external information that is absent from the source inputs) are involved and optimized respectively in generating the restoration results. We further derived their learning behaviors, optimization objectives, and the corresponding information boundaries by extending the information bottleneck principle. Based on this theoretic framework, we found that many existing generative methods tend to be direct applications of the general models designed for conventional generation tasks, which may suffer from problems including over-invested abstraction processes, inherent details loss, and vanishing gradients or imbalance in training. We analyzed these issues with both intuitive and theoretical explanations and proved them with empirical evidence respectively. Ultimately, we proposed general solutions or ideas to address the above issue and validated these approaches with performance boosts on six datasets of three different image restoration tasks.

Autonomous Micro Aerial Vehicles are deployed for a variety tasks including surveillance and monitoring. Perching and staring allow the vehicle to monitor targets without flying, saving battery power and increasing the overall mission time without the need to frequently replace batteries. This paper addresses the Active Visual Perching (AVP) control problem to autonomously perch on inclined surfaces up to $90^\circ$. Our approach generates dynamically feasible trajectories to navigate and perch on a desired target location, while taking into account actuator and Field of View (FoV) constraints. By replanning in mid-flight, we take advantage of more accurate target localization increasing the perching maneuver's robustness to target localization or control errors. We leverage the Karush-Kuhn-Tucker (KKT) conditions to identify the compatibility between planning objectives and the visual sensing constraint during the planned maneuver. Furthermore, we experimentally identify the corresponding boundary conditions that maximizes the spatio-temporal target visibility during the perching maneuver. The proposed approach works on-board in real-time with significant computational constraints relying exclusively on cameras and an Inertial Measurement Unit (IMU). Experimental results validate the proposed approach and shows the higher success rate as well as increased target interception precision and accuracy with respect to a one-shot planning approach, while still retaining aggressive capabilities with flight envelopes that include large excursions from the hover position on inclined surfaces up to 90$^\circ$, angular speeds up to 750~deg/s, and accelerations up to 10~m/s$^2$.

A fundamental bottleneck in utilising complex machine learning systems for critical applications has been not knowing why they do and what they do, thus preventing the development of any crucial safety protocols. To date, no method exist that can provide full insight into the granularity of the neural network's decision process. In the past, saliency maps were an early attempt at resolving this problem through sensitivity calculations, whereby dimensions of a data point are selected based on how sensitive the output of the system is to them. However, the success of saliency maps has been at best limited, mainly due to the fact that they interpret the underlying learning system through a linear approximation. We present a novel class of methods for generating nonlinear saliency maps which fully account for the nonlinearity of the underlying learning system. While agreeing with linear saliency maps on simple problems where linear saliency maps are correct, they clearly identify more specific drivers of classification on complex examples where nonlinearities are more pronounced. This new class of methods significantly aids interpretability of deep neural networks and related machine learning systems. Crucially, they provide a starting point for their more broad use in serious applications, where 'why' is equally important as 'what'.

In this paper, we consider the problem where a drone has to collect semantic information to classify multiple moving targets. In particular, we address the challenge of computing control inputs that move the drone to informative viewpoints, position and orientation, when the information is extracted using a "black-box" classifier, e.g., a deep learning neural network. These algorithms typically lack of analytical relationships between the viewpoints and their associated outputs, preventing their use in information-gathering schemes. To fill this gap, we propose a novel attention-based architecture, trained via Reinforcement Learning (RL), that outputs the next viewpoint for the drone favoring the acquisition of evidence from as many unclassified targets as possible while reasoning about their movement, orientation, and occlusions. Then, we use a low-level MPC controller to move the drone to the desired viewpoint taking into account its actual dynamics. We show that our approach not only outperforms a variety of baselines but also generalizes to scenarios unseen during training. Additionally, we show that the network scales to large numbers of targets and generalizes well to different movement dynamics of the targets.

The bivariate Gaussian distribution has been a key model for many developments in statistics. However, many real-world phenomena generate data that follow asymmetric distributions, and consequently bivariate normal model is inappropriate in such situations. Bidimensional log-symmetric models have attractive properties and can be considered as good alternatives in these cases. In this paper, we discuss bivariate log-symmetric distributions and their characterizations. We establish several distributional properties and obtain the maximum likelihood estimators of the model parameters. A Monte Carlo simulation study is performed for examining the performance of the developed parameter estimation method. A real data set is finally analyzed to illustrate the proposed model and the associated inferential method.

Estimating the probability of failure for complex real-world systems using high-fidelity computational models is often prohibitively expensive, especially when the probability is small. Exploiting low-fidelity models can make this process more feasible, but merging information from multiple low-fidelity and high-fidelity models poses several challenges. This paper presents a robust multi-fidelity surrogate modeling strategy in which the multi-fidelity surrogate is assembled using an active learning strategy using an on-the-fly model adequacy assessment set within a subset simulation framework for efficient reliability analysis. The multi-fidelity surrogate is assembled by first applying a Gaussian process correction to each low-fidelity model and assigning a model probability based on the model's local predictive accuracy and cost. Three strategies are proposed to fuse these individual surrogates into an overall surrogate model based on model averaging and deterministic/stochastic model selection. The strategies also dictate which model evaluations are necessary. No assumptions are made about the relationships between low-fidelity models, while the high-fidelity model is assumed to be the most accurate and most computationally expensive model. Through two analytical and two numerical case studies, including a case study evaluating the failure probability of Tristructural isotropic-coated (TRISO) nuclear fuels, the algorithm is shown to be highly accurate while drastically reducing the number of high-fidelity model calls (and hence computational cost).

Bid optimization for online advertising from single advertiser's perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertiser's objective and global profit have been significantly improved compared to state-of-art methods.

Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.

北京阿比特科技有限公司