亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we propose a numerical method to solve a 2D advection-diffusion equation, in the highly oscillatory regime. We use an efficient and robust integrator which leads to an accurate approximation of the solution without any time step-size restriction. Uniform first and second order numerical approximations in time are obtained with errors, and at a cost, that are independent of the oscillation frequency. {This work is part of a long time project, and the final goal is the resolution of a Stokes-advection-diffusion system, in which the expression for the velocity in the advection term, is the solution of the Stokes equations.} This paper focuses on the time multiscale challenge, coming from the velocity that is an $\varepsilon-$periodic function, whose expression is explicitly known. We also introduce a two--scale formulation, as a first step to the numerical resolution of the complete oscillatory Stokes-advection-diffusion system, that is currently under investigation. This two--scale formulation is also useful to understand the asymptotic behaviour of the solution.

相關內容

In PDE-constrained optimization, one aims to find design parameters that minimize some objective, subject to the satisfaction of a partial differential equation. A major challenges is computing gradients of the objective to the design parameters, as applying the chain rule requires computing the Jacobian of the design parameters to the PDE's state. The adjoint method avoids this Jacobian by computing partial derivatives of a Lagrangian. Evaluating these derivatives requires the solution of a second PDE with the adjoint differential operator to the constraint, resulting in a backwards-in-time simulation. Particle-based Monte Carlo solvers are often used to compute the solution to high-dimensional PDEs. However, such solvers have the drawback of introducing noise to the computed results, thus requiring stochastic optimization methods. To guarantee convergence in this setting, both the constraint and adjoint Monte Carlo simulations should simulate the same particle trajectories. For large simulations, storing full paths from the constraint equation for re-use in the adjoint equation becomes infeasible due to memory limitations. In this paper, we provide a reversible extension to the family of permuted congruential pseudorandom number generators (PCG). We then use such a generator to recompute these time-reversed paths for the heat equation, avoiding these memory issues.

The problem of optimal recovering high-order mixed derivatives of bivariate functions with finite smoothness is studied. On the basis of the truncation method, an algorithm for numerical differentiation is constructed, which is order-optimal both in the sense of accuracy and in terms of the amount of involved Galerkin information.

In this paper, we combine the Smolyak technique for multi-dimensional interpolation with the Filon-Clenshaw-Curtis (FCC) rule for one-dimensional oscillatory integration, to obtain a new Filon-Clenshaw-Curtis-Smolyak (FCCS) rule for oscillatory integrals with linear phase over the $d-$dimensional cube $[-1,1]^d$. By combining stability and convergence estimates for the FCC rule with error estimates for the Smolyak interpolation operator, we obtain an error estimate for the FCCS rule, consisting of the product of a Smolyak-type error estimate multiplied by a term that decreases with $\mathcal{O}(k^{-\tilde{d}})$, where $k$ is the wavenumber and $\tilde{d}$ is the number of oscillatory dimensions. If all dimensions are oscillatory, a higher negative power of $k$ appears in the estimate. As an application, we consider the forward problem of uncertainty quantification (UQ) for a one-space-dimensional Helmholtz problem with wavenumber $k$ and a random heterogeneous refractive index, depending in an affine way on $d$ i.i.d. uniform random variables. After applying a classical hybrid numerical-asymptotic approximation, expectations of functionals of the solution of this problem can be formulated as a sum of oscillatory integrals over $[-1,1]^d$, which we compute using the FCCS rule. We give numerical results for the FCCS rule and the UQ algorithm showing that accuracy improves when both $k$ and the order of the rule increase. We also give results for dimension-adaptive sparse grid FCCS quadrature showing its efficiency as dimension increases.

The Sinkhorn algorithm is a numerical method for the solution of optimal transport problems. Here, I give a brief survey of this algorithm, with a strong emphasis on its geometric origin: it is natural to view it as a discretization, by standard methods, of a non-linear integral equation. In the appendix, I also provide a short summary of an early result of Beurling on product measures, directly related to the Sinkhorn algorithm.

Hierarchical matrices approximate a given matrix by a decomposition into low-rank submatrices that can be handled efficiently in factorized form. $\mathcal{H}^2$-matrices refine this representation following the ideas of fast multipole methods in order to achieve linear, i.e., optimal complexity for a variety of important algorithms. The matrix multiplication, a key component of many more advanced numerical algorithms, has so far proven tricky: the only linear-time algorithms known so far either require the very special structure of HSS-matrices or need to know a suitable basis for all submatrices in advance. In this article, a new and fairly general algorithm for multiplying $\mathcal{H}^2$-matrices in linear complexity with adaptively constructed bases is presented. The algorithm consists of two phases: first an intermediate representation with a generalized block structure is constructed, then this representation is re-compressed in order to match the structure prescribed by the application. The complexity and accuracy are analysed and numerical experiments indicate that the new algorithm can indeed be significantly faster than previous attempts.

In this paper we present an abstract nonsmooth optimization problem for which we recall existence and uniqueness results. We show a numerical scheme to approximate its solution. The theory is later applied to a sample static contact problem describing an elastic body in frictional contact with a foundation. This problem leads to a hemivariational inequality which we solve numerically. Finally, we compare three computational methods of solving contact mechanical problems: direct optimization method, augmented Lagrangian method and primal-dual active set strategy.

This paper introduces novel bulk-surface splitting schemes of first and second order for the wave equation with kinetic and acoustic boundary conditions of semi-linear type. For kinetic boundary conditions, we propose a reinterpretation of the system equations as a coupled system. This means that the bulk and surface dynamics are modeled separately and connected through a coupling constraint. This allows the implementation of splitting schemes, which show first-order convergence in numerical experiments. On the other hand, acoustic boundary conditions naturally separate bulk and surface dynamics. Here, Lie and Strang splitting schemes reach first- and second-order convergence, respectively, as we reveal numerically.

In this paper we introduce a multilevel Picard approximation algorithm for semilinear parabolic partial integro-differential equations (PIDEs). We prove that the numerical approximation scheme converges to the unique viscosity solution of the PIDE under consideration. To that end, we derive a Feynman-Kac representation for the unique viscosity solution of the semilinear PIDE, extending the classical Feynman-Kac representation for linear PIDEs. Furthermore, we show that the algorithm does not suffer from the curse of dimensionality, i.e. the computational complexity of the algorithm is bounded polynomially in the dimension $d$ and the reciprocal of the prescribed accuracy $\varepsilon$. We also provide a numerical example in up to 10'000 dimensions to demonstrate its applicability.

Quantum computing is a growing field where the information is processed by two-levels quantum states known as qubits. Current physical realizations of qubits require a careful calibration, composed by different experiments, due to noise and decoherence phenomena. Among the different characterization experiments, a crucial step is to develop a model to classify the measured state by discriminating the ground state from the excited state. In this proceedings we benchmark multiple classification techniques applied to real quantum devices.

In this paper, new unfitted mixed finite elements are presented for elliptic interface problems with jump coefficients. Our model is based on a fictitious domain formulation with distributed Lagrange multiplier. The relevance of our investigations is better seen when applied to the framework of fluid structure interaction problems. Two finite elements schemes with piecewise constant Lagrange multiplier are proposed and their stability is proved theoretically. Numerical results compare the performance of those elements, confirming the theoretical proofs and verifying that the schemes converge with optimal rate.

北京阿比特科技有限公司