In this paper, we combine the Smolyak technique for multi-dimensional interpolation with the Filon-Clenshaw-Curtis (FCC) rule for one-dimensional oscillatory integration, to obtain a new Filon-Clenshaw-Curtis-Smolyak (FCCS) rule for oscillatory integrals with linear phase over the $d-$dimensional cube $[-1,1]^d$. By combining stability and convergence estimates for the FCC rule with error estimates for the Smolyak interpolation operator, we obtain an error estimate for the FCCS rule, consisting of the product of a Smolyak-type error estimate multiplied by a term that decreases with $\mathcal{O}(k^{-\tilde{d}})$, where $k$ is the wavenumber and $\tilde{d}$ is the number of oscillatory dimensions. If all dimensions are oscillatory, a higher negative power of $k$ appears in the estimate. As an application, we consider the forward problem of uncertainty quantification (UQ) for a one-space-dimensional Helmholtz problem with wavenumber $k$ and a random heterogeneous refractive index, depending in an affine way on $d$ i.i.d. uniform random variables. After applying a classical hybrid numerical-asymptotic approximation, expectations of functionals of the solution of this problem can be formulated as a sum of oscillatory integrals over $[-1,1]^d$, which we compute using the FCCS rule. We give numerical results for the FCCS rule and the UQ algorithm showing that accuracy improves when both $k$ and the order of the rule increase. We also give results for dimension-adaptive sparse grid FCCS quadrature showing its efficiency as dimension increases.
This paper presents the workspace optimization of one-translational two-rotational (1T2R) parallel manipulators using a dimensionally homogeneous constraint-embedded Jacobian. The mixed degrees of freedom of 1T2R parallel manipulators, which cause dimensional inconsistency, make it difficult to optimize their architectural parameters. To solve this problem, a point-based approach with a shifting property, selection matrix, and constraint-embedded inverse Jacobian is proposed. A simplified formulation is provided, eliminating the complex partial differentiation required in previous approaches. The dimensional homogeneity of the proposed method was analytically proven, and its validity was confirmed by comparing it with the conventional point-based method using a 3-PRS manipulator. Furthermore, the approach was applied to an asymmetric 2-RRS/RRRU manipulator with no parasitic motion. This mechanism has a T-shape combination of limbs with different kinematic parameters, making it challenging to derive a dimensionally homogeneous Jacobian using the conventional method. Finally, optimization was performed, and the results show that the proposed method is more efficient than the conventional approach. The efficiency and simplicity of the proposed method were verified using two distinct parallel manipulators.
This paper proposes two innovative vector transport operators, leveraging the Cayley transform, for the generalized Stiefel manifold embedded with a non-standard inner product. Specifically, it introduces the differentiated retraction and an approximation of the Cayley transform to the differentiated matrix exponential. These vector transports are demonstrated to satisfy the Ring-Wirth non-expansive condition under non-standard metrics while preserving isometry. Building upon the novel vector transport operators, we extend the modified Polak-Ribi$\acute{e}$re-Polyak (PRP) conjugate gradient method to the generalized Stiefel manifold. Under a non-monotone line search condition, we prove our algorithm globally converges to a stationary point. The efficiency of the proposed vector transport operators is empirically validated through numerical experiments involving generalized eigenvalue problems and canonical correlation analysis.
In this paper, the numerical approximation of the generalized Burgers'-Huxley equation (GBHE) with weakly singular kernels using non-conforming methods will be presented. Specifically, we discuss two new formulations. The first formulation is based on the non-conforming finite element method (NCFEM). The other formulation is based on discontinuous Galerkin finite element methods (DGFEM). The wellposedness results for both formulations are proved. Then, a priori error estimates for both the semi-discrete and fully-discrete schemes are derived. Specific numerical examples, including some applications for the GBHE with weakly singular model, are discussed to validate the theoretical results.
We establish a general convergence theory of the Rayleigh--Ritz method and the refined Rayleigh--Ritz method for computing some simple eigenpair ($\lambda_{*},x_{*}$) of a given analytic nonlinear eigenvalue problem (NEP). In terms of the deviation $\varepsilon$ of $x_{*}$ from a given subspace $\mathcal{W}$, we establish a priori convergence results on the Ritz value, the Ritz vector and the refined Ritz vector, and present sufficient convergence conditions for them. The results show that, as $\varepsilon\rightarrow 0$, there is a Ritz value that unconditionally converges to $\lambda_*$ and the corresponding refined Ritz vector does so too but the Ritz vector may fail to converge and even may not be unique. We also present an error bound for the approximate eigenvector in terms of the computable residual norm of a given approximate eigenpair, and give lower and upper bounds for the error of the refined Ritz vector and the Ritz vector as well as for that of the corresponding residual norms. These results nontrivially extend some convergence results on these two methods for the linear eigenvalue problem to the NEP. Examples are constructed to illustrate some of the results.
In this work, we propose two criteria for linear codes obtained from the Plotkin sum construction being symplectic self-orthogonal (SO) and linear complementary dual (LCD). As specific constructions, several classes of symplectic SO codes with good parameters including symplectic maximum distance separable codes are derived via $\ell$-intersection pairs of linear codes and generalized Reed-Muller codes. Also symplectic LCD codes are constructed from general linear codes. Furthermore, we obtain some binary symplectic LCD codes, which are equivalent to quaternary trace Hermitian additive complementary dual codes that outperform best-known quaternary Hermitian LCD codes reported in the literature. In addition, we prove that symplectic SO and LCD codes obtained in these ways are asymptotically good.
Using a novel modeling approach based on the so-called environmental stress level (ESL), we develop a mathematical model to describe systematically the collective influence of oxygen concentration and stiffness of the extracellular matrix on the response of tumor cells to a combined chemotherapeutic treatment. We perform Bayesian calibrations of the resulting model using particle filters, with in vitro experimental data for different hepatocellular carcinoma cell lines. The calibration results support the validity of our mathematical model. Furthermore, they shed light on individual as well as synergistic effects of hypoxia and tissue stiffness on tumor cell dynamics under chemotherapy.
In this paper, we study the problem of continuous 3D shape representations. The majority of existing successful methods are coordinate-based implicit neural representations. However, they are inefficient to render novel views or recover explicit surface points. A few works start to formulate 3D shapes as ray-based neural functions, but the learned structures are inferior due to the lack of multi-view geometry consistency. To tackle these challenges, we propose a new framework called RayDF. It consists of three major components: 1) the simple ray-surface distance field, 2) the novel dual-ray visibility classifier, and 3) a multi-view consistency optimization module to drive the learned ray-surface distances to be multi-view geometry consistent. We extensively evaluate our method on three public datasets, demonstrating remarkable performance in 3D surface point reconstruction on both synthetic and challenging real-world 3D scenes, clearly surpassing existing coordinate-based and ray-based baselines. Most notably, our method achieves a 1000x faster speed than coordinate-based methods to render an 800x800 depth image, showing the superiority of our method for 3D shape representation. Our code and data are available at //github.com/vLAR-group/RayDF
The paper is briefly dealing with greater or lesser misused normalization in self-modeling/multivariate curve resolution (S/MCR) practice. The importance of the correct use of the ode solvers and apt kinetic illustrations are elucidated. The new terms, external and internal normalizations are defined and interpreted. The problem of reducibility of a matrix is touched. Improper generalization/development of normalization-based methods are cited as examples. The position of the extreme values of the signal contribution function is clarified. An Executable Notebook with Matlab Live Editor was created for algorithmic explanations and depictions.
In this paper we propose a novel and general approach to design semi-implicit methods for the simulation of fluid-structure interaction problems in a fully Eulerian framework. In order to properly present the new method, we focus on the two-dimensional version of the general model developed to describe full membrane elasticity. The approach consists in treating the elastic source term by writing an evolution equation on the structure stress tensor, even if it is nonlinear. Then, it is possible to show that its semi-implicit discretization allows us to add to the linear system of the Navier-Stokes equations some consistent dissipation terms that depend on the local deformation and stiffness of the membrane. Due to the linearly implicit discretization, the approach does not need iterative solvers and can be easily applied to any Eulerian framework for fluid-structure interaction. Its stability properties are studied by performing a Von Neumann analysis on a simplified one-dimensional model and proving that, thanks to the additional dissipation, the discretized coupled system is unconditionally stable. Several numerical experiments are shown for two-dimensional problems by comparing the new method to the original explicit scheme and studying the effect of structure stiffness and mesh refinement on the membrane dynamics. The newly designed scheme is able to relax the time step restrictions that affect the explicit method and reduce crucially the computational costs, especially when very stiff membranes are under consideration.
In this paper we discuss a deterministic form of ensemble Kalman inversion as a regularization method for linear inverse problems. By interpreting ensemble Kalman inversion as a low-rank approximation of Tikhonov regularization, we are able to introduce a new sampling scheme based on the Nystr\"om method that improves practical performance. Furthermore, we formulate an adaptive version of ensemble Kalman inversion where the sample size is coupled with the regularization parameter. We prove that the proposed scheme yields an order optimal regularization method under standard assumptions if the discrepancy principle is used as a stopping criterion. The paper concludes with a numerical comparison of the discussed methods for an inverse problem of the Radon transform.