亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Using a novel modeling approach based on the so-called environmental stress level (ESL), we develop a mathematical model to describe systematically the collective influence of oxygen concentration and stiffness of the extracellular matrix on the response of tumor cells to a combined chemotherapeutic treatment. We perform Bayesian calibrations of the resulting model using particle filters, with in vitro experimental data for different hepatocellular carcinoma cell lines. The calibration results support the validity of our mathematical model. Furthermore, they shed light on individual as well as synergistic effects of hypoxia and tissue stiffness on tumor cell dynamics under chemotherapy.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Continuity · 拉格朗日乘子 · 離散化 · CASE ·
2023 年 12 月 18 日

Introducing a coupling framework reminiscent of FETI methods, but here on abstract form, we establish conditions for stability and minimal requirements for well-posedness on the continuous level, as well as conditions on local solvers for the approximation of subproblems. We then discuss stability of the resulting Lagrange multiplier methods and show stability under a mesh conditions between the local discretizations and the mortar space. If this condition is not satisfied we show how a stabilization, acting only on the multiplier can be used to achieve stability. The design of preconditioners of the Schur complement system is discussed in the unstabilized case. Finally we discuss some applications that enter the framework.

We study unique continuation over an interface using a stabilized unfitted finite element method tailored to the conditional stability of the problem. The interface is approximated using an isoparametric transformation of the background mesh and the corresponding geometrical error is included in our error analysis. To counter possible destabilizing effects caused by non-conformity of the discretization and cope with the interface conditions, we introduce adapted regularization terms. This allows to derive error estimates based on conditional stability. Numerical experiments suggest that the presence of an interface seems to be of minor importance for the continuation of the solution beyond the data domain. On the other hand, certain convexity properties of the geometry are crucial as has already been observed for many other problems without interfaces.

In this paper we present a mathematical and numerical analysis of an eigenvalue problem associated to the elasticity-Stokes equations stated in two and three dimensions. Both problems are related through the Herrmann pressure. Employing the Babu\v ska--Brezzi theory, it is proved that the resulting continuous and discrete variational formulations are well-posed. In particular, the finite element method is based on general inf-sup stables pairs for the Stokes system, such that, Taylor--Hood finite elements. By using a general approximation theory for compact operators, we obtain optimal order error estimates for the eigenfunctions and a double order for the eigenvalues. Under mild assumptions, we have that these estimates hold with constants independent of the Lam\'e coefficient $\lambda$. In addition, we carry out the reliability and efficiency analysis of a residual-based a posteriori error estimator for the spectral problem. We report a series of numerical tests in order to assess the performance of the method and its behavior when the nearly incompressible case of elasticity is considered.

In this paper we consider the numerical solution of fractional differential equations. In particular, we study a step-by-step graded mesh procedure based on an expansion of the vector field using orthonormal Jacobi polynomials. Under mild hypotheses, the proposed procedure is capable of getting spectral accuracy. A few numerical examples are reported to confirm the theoretical findings.

Deep learning methods have gained considerable interest in the numerical solution of various partial differential equations (PDEs). One particular focus is physics-informed neural networks (PINN), which integrate physical principles into neural networks. This transforms the process of solving PDEs into optimization problems for neural networks. To address a collection of advection-diffusion equations (ADE) in a range of difficult circumstances, this paper proposes a novel network structure. This architecture integrates the solver, a multi-scale deep neural networks (MscaleDNN) utilized in the PINN method, with a hard constraint technique known as HCPINN. This method introduces a revised formulation of the desired solution for ADE by utilizing a loss function that incorporates the residuals of the governing equation and penalizes any deviations from the specified boundary and initial constraints. By surpassing the boundary constraints automatically, this method improves the accuracy and efficiency of the PINN technique. To address the ``spectral bias'' phenomenon in neural networks, a subnetwork structure of MscaleDNN and a Fourier-induced activation function are incorporated into the HCPINN, resulting in a hybrid approach called SFHCPINN. The effectiveness of SFHCPINN is demonstrated through various numerical experiments involving ADE in different dimensions. The numerical results indicate that SFHCPINN outperforms both standard PINN and its subnetwork version with Fourier feature embedding. It achieves remarkable accuracy and efficiency while effectively handling complex boundary conditions and high-frequency scenarios in ADE.

The singular value decomposition (SVD) of a matrix is a powerful tool for many matrix computation problems. In this paper, we consider generalizing the standard SVD to analyze and compute the regularized solution of linear ill-posed problems that arise from discretizing the first kind Fredholm integral equations. For the commonly used quadrature method for discretization, a regularizer of the form $\|x\|_{M}^2:=x^TMx$ should be exploited, where $M$ is symmetric positive definite. To handle this regularizer, we give the weighted SVD (WSVD) of a matrix under the $M$-inner product. Several important applications of WSVD, such as low-rank approximation and solving the least squares problems with minimum $\|\cdot\|_M$-norm, are studied. We propose the weighted Golub-Kahan bidiagonalization (WGKB) to compute several dominant WSVD components and a corresponding weighted LSQR algorithm to iteratively solve the least squares problem. All the above tools and methods are used to analyze and solve linear ill-posed problems with the regularizer $\|x\|_{M}^2$. A WGKB-based subspace projection regularization method is proposed to efficiently compute a good regularized solution, which can incorporate the prior information about $x$ encoded by the regularizer $\|x\|_{M}^2$. Several numerical experiments are performed to illustrate the fruitfulness of our methods.

Block majorization-minimization (BMM) is a simple iterative algorithm for nonconvex optimization that sequentially minimizes a majorizing surrogate of the objective function in each block coordinate while the other block coordinates are held fixed. We consider a family of BMM algorithms for minimizing smooth nonconvex objectives, where each parameter block is constrained within a subset of a Riemannian manifold. We establish that this algorithm converges asymptotically to the set of stationary points, and attains an $\epsilon$-stationary point within $\widetilde{O}(\epsilon^{-2})$ iterations. In particular, the assumptions for our complexity results are completely Euclidean when the underlying manifold is a product of Euclidean or Stiefel manifolds, although our analysis makes explicit use of the Riemannian geometry. Our general analysis applies to a wide range of algorithms with Riemannian constraints: Riemannian MM, block projected gradient descent, optimistic likelihood estimation, geodesically constrained subspace tracking, robust PCA, and Riemannian CP-dictionary-learning. We experimentally validate that our algorithm converges faster than standard Euclidean algorithms applied to the Riemannian setting.

We study hypothesis testing under communication constraints, where each sample is quantized before being revealed to a statistician. Without communication constraints, it is well known that the sample complexity of simple binary hypothesis testing is characterized by the Hellinger distance between the distributions. We show that the sample complexity of simple binary hypothesis testing under communication constraints is at most a logarithmic factor larger than in the unconstrained setting and this bound is tight. We develop a polynomial-time algorithm that achieves the aforementioned sample complexity. Our framework extends to robust hypothesis testing, where the distributions are corrupted in the total variation distance. Our proofs rely on a new reverse data processing inequality and a reverse Markov inequality, which may be of independent interest. For simple $M$-ary hypothesis testing, the sample complexity in the absence of communication constraints has a logarithmic dependence on $M$. We show that communication constraints can cause an exponential blow-up leading to $\Omega(M)$ sample complexity even for adaptive algorithms.

In this article, we study nonparametric inference for a covariate-adjusted regression function. This parameter captures the average association between a continuous exposure and an outcome after adjusting for other covariates. In particular, under certain causal conditions, this parameter corresponds to the average outcome had all units been assigned to a specific exposure level, known as the causal dose-response curve. We propose a debiased local linear estimator of the covariate-adjusted regression function, and demonstrate that our estimator converges pointwise to a mean-zero normal limit distribution. We use this result to construct asymptotically valid confidence intervals for function values and differences thereof. In addition, we use approximation results for the distribution of the supremum of an empirical process to construct asymptotically valid uniform confidence bands. Our methods do not require undersmoothing, permit the use of data-adaptive estimators of nuisance functions, and our estimator attains the optimal rate of convergence for a twice differentiable function. We illustrate the practical performance of our estimator using numerical studies and an analysis of the effect of air pollution exposure on cardiovascular mortality.

In this work, we present a multiscale approach for the reliable coarse-scale approximation of spatial network models represented by a linear system of equations with respect to the nodes of a graph. The method is based on the ideas of the Localized Orthogonal Decomposition (LOD) strategy and is constructed in a fully algebraic way. This allows to apply the method to geometrically challenging objects such as corrugated cardboard. In particular, the method can also be applied to finite difference or finite element discretizations of elliptic partial differential equations, yielding an approximation with similar properties as the LOD in the continuous setting. We present a rigorous error analysis of the proposed method under suitable assumptions on the network. Moreover, numerical examples are presented that underline our theoretical results.

北京阿比特科技有限公司