亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multiplication is indispensable and is one of the core operations in many modern applications including signal processing and neural networks. Conventional right-to-left (RL) multiplier extensively contributes to the power consumption, area utilization and critical path delay in such applications. This paper proposes a low latency multiplier based on online or left-to-right (LR) arithmetic which can increase throughput and reduce latency by digit-level pipelining. Online arithmetic enables overlapping successive operations regardless of data dependency because of the most significant digit first mode of operation. To produce most significant digit first, it uses redundant number system and we can have a carry-free addition, therefore, the delay of the arithmetic operation is independent of operand bit width. The operations are performed digit by digit serially from left to right which allows gradual increase in the slice activities making it suitable for implementation on reconfigurable devices. Serial nature of the online algorithm and gradual increment/decrement of active slices minimize the interconnects and signal activities resulting in overall reduction of area and power consumption. We present online multipliers with; both inputs in serial, and one in serial and one in parallel. Pipelined and non-pipelined designs of the proposed multipliers have been synthesized with GSCL 45nm technology on Synopsys Design Compiler. Thorough comparative analysis has been performed using widely used performance metrics. The results show that the proposed online multipliers outperform the RL multipliers.

相關內容

Data heterogeneity across clients is a key challenge in federated learning. Prior works address this by either aligning client and server models or using control variates to correct client model drift. Although these methods achieve fast convergence in convex or simple non-convex problems, the performance in over-parameterized models such as deep neural networks is lacking. In this paper, we first revisit the widely used FedAvg algorithm in a deep neural network to understand how data heterogeneity influences the gradient updates across the neural network layers. We observe that while the feature extraction layers are learned efficiently by FedAvg, the substantial diversity of the final classification layers across clients impedes the performance. Motivated by this, we propose to correct model drift by variance reduction only on the final layers. We demonstrate that this significantly outperforms existing benchmarks at a similar or lower communication cost. We furthermore provide proof for the convergence rate of our algorithm.

Diffusion models are powerful generative models but suffer from slow sampling, often taking 1000 sequential denoising steps for one sample. As a result, considerable efforts have been directed toward reducing the number of denoising steps, but these methods hurt sample quality. Instead of reducing the number of denoising steps (trading quality for speed), in this paper we explore an orthogonal approach: can we run the denoising steps in parallel (trading compute for speed)? In spite of the sequential nature of the denoising steps, we show that surprisingly it is possible to parallelize sampling via Picard iterations, by guessing the solution of future denoising steps and iteratively refining until convergence. With this insight, we present ParaDiGMS, a novel method to accelerate the sampling of pretrained diffusion models by denoising multiple steps in parallel. ParaDiGMS is the first diffusion sampling method that enables trading compute for speed and is even compatible with existing fast sampling techniques such as DDIM and DPMSolver. Using ParaDiGMS, we improve sampling speed by 2-4x across a range of robotics and image generation models, giving state-of-the-art sampling speeds of 0.2s on 100-step DiffusionPolicy and 16s on 1000-step StableDiffusion-v2 with no measurable degradation of task reward, FID score, or CLIP score.

Both capacity and latency are crucial performance metrics for the optimal operation of most networking services and applications, from online gaming to futuristic holographic-type communications. Networks worldwide have witnessed important breakthroughs in terms of capacity, including fibre introduction everywhere, new radio technologies and faster core networks. However, the impact of these capacity upgrades on end-to-end delay is not straightforward as traffic has also grown exponentially. This article overviews the current status of end-to-end latency on different regions and continents worldwide and how far these are from the theoretical minimum baseline, given by the speed of light propagation over an optical fibre. We observe that the trend in the last decade goes toward latency reduction (in spite of the ever-increasing annual traffic growth), but still there are important differences between countries.

Forecasting physical signals in long time range is among the most challenging tasks in Partial Differential Equations (PDEs) research. To circumvent limitations of traditional solvers, many different Deep Learning methods have been proposed. They are all based on auto-regressive methods and exhibit stability issues. Drawing inspiration from the stability property of implicit numerical schemes, we introduce a stable auto-regressive implicit neural network. We develop a theory based on the stability definition of schemes to ensure the stability in forecasting of this network. It leads us to introduce hard constraints on its weights and propagate the dynamics in the latent space. Our experimental results validate our stability property, and show improved results at long-term forecasting for two transports PDEs.

Shape restriction, like monotonicity or convexity, imposed on a function of interest, such as a regression or density function, allows for its estimation without smoothness assumptions. The concept of $k$-monotonicity encompasses a family of shape restrictions, including decreasing and convex decreasing as special cases corresponding to $k=1$ and $k=2$. We consider Bayesian approaches to estimate a $k$-monotone density. By utilizing a kernel mixture representation and putting a Dirichlet process or a finite mixture prior on the mixing distribution, we show that the posterior contraction rate in the Hellinger distance is $(n/\log n)^{- k/(2k + 1)}$ for a $k$-monotone density, which is minimax optimal up to a polylogarithmic factor. When the true $k$-monotone density is a finite $J_0$-component mixture of the kernel, the contraction rate improves to the nearly parametric rate $\sqrt{(J_0 \log n)/n}$. Moreover, by putting a prior on $k$, we show that the same rates hold even when the best value of $k$ is unknown. A specific application in modeling the density of $p$-values in a large-scale multiple testing problem is considered. Simulation studies are conducted to evaluate the performance of the proposed method.

In many industrial applications, obtaining labeled observations is not straightforward as it often requires the intervention of human experts or the use of expensive testing equipment. In these circumstances, active learning can be highly beneficial in suggesting the most informative data points to be used when fitting a model. Reducing the number of observations needed for model development alleviates both the computational burden required for training and the operational expenses related to labeling. Online active learning, in particular, is useful in high-volume production processes where the decision about the acquisition of the label for a data point needs to be taken within an extremely short time frame. However, despite the recent efforts to develop online active learning strategies, the behavior of these methods in the presence of outliers has not been thoroughly examined. In this work, we investigate the performance of online active linear regression in contaminated data streams. Our study shows that the currently available query strategies are prone to sample outliers, whose inclusion in the training set eventually degrades the predictive performance of the models. To address this issue, we propose a solution that bounds the search area of a conditional D-optimal algorithm and uses a robust estimator. Our approach strikes a balance between exploring unseen regions of the input space and protecting against outliers. Through numerical simulations, we show that the proposed method is effective in improving the performance of online active learning in the presence of outliers, thus expanding the potential applications of this powerful tool.

We propose a new algorithm for the problem of recovering data that adheres to multiple, heterogeneous low-dimensional structures from linear observations. Focusing on data matrices that are simultaneously row-sparse and low-rank, we propose and analyze an iteratively reweighted least squares (IRLS) algorithm that is able to leverage both structures. In particular, it optimizes a combination of non-convex surrogates for row-sparsity and rank, a balancing of which is built into the algorithm. We prove locally quadratic convergence of the iterates to a simultaneously structured data matrix in a regime of minimal sample complexity (up to constants and a logarithmic factor), which is known to be impossible for a combination of convex surrogates. In experiments, we show that the IRLS method exhibits favorable empirical convergence, identifying simultaneously row-sparse and low-rank matrices from fewer measurements than state-of-the-art methods.

The k-spectrum of a string is the set of all distinct substrings of length k occurring in the string. K-spectra have many applications in bioinformatics including pseudoalignment and genome assembly. The Spectral Burrows-Wheeler Transform (SBWT) has been recently introduced as an algorithmic tool to efficiently represent and query these objects. The longest common prefix (LCP) array for a k-spectrum is an array of length n that stores the length of the longest common prefix of adjacent k-mers as they occur in lexicographical order. The LCP array has at least two important applications, namely to accelerate pseudoalignment algorithms using the SBWT and to allow simulation of variable-order de Bruijn graphs within the SBWT framework. In this paper we explore algorithms to compute the LCP array efficiently from the SBWT representation of the k-spectrum. Starting with a straightforward O(nk) time algorithm, we describe algorithms that are efficient in both theory and practice. We show that the LCP array can be computed in optimal O(n) time, where n is the length of the SBWT of the spectrum. In practical genomics scenarios, we show that this theoretically optimal algorithm is indeed practical, but is often outperformed on smaller values of k by an asymptotically suboptimal algorithm that interacts better with the CPU cache. Our algorithms share some features with both classical Burrows-Wheeler inversion algorithms and LCP array construction algorithms for suffix arrays.

Multiple systems estimation is a standard approach to quantifying hidden populations where data sources are based on lists of known cases. A typical modelling approach is to fit a Poisson loglinear model to the numbers of cases observed in each possible combination of the lists. It is necessary to decide which interaction parameters to include in the model, and information criterion approaches are often used for model selection. Difficulties in the context of multiple systems estimation may arise due to sparse or nil counts based on the intersection of lists, and care must be taken when information criterion approaches are used for model selection due to issues relating to the existence of estimates and identifiability of the model. Confidence intervals are often reported conditional on the model selected, providing an over-optimistic impression of the accuracy of the estimation. A bootstrap approach is a natural way to account for the model selection procedure. However, because the model selection step has to be carried out for every bootstrap replication, there may be a high or even prohibitive computational burden. We explore the merit of modifying the model selection procedure in the bootstrap to look only among a subset of models, chosen on the basis of their information criterion score on the original data. This provides large computational gains with little apparent effect on inference. Another model selection approach considered and investigated is a downhill search approach among models, possibly with multiple starting points.

Federated learning is a new distributed machine learning framework, where a bunch of heterogeneous clients collaboratively train a model without sharing training data. In this work, we consider a practical and ubiquitous issue in federated learning: intermittent client availability, where the set of eligible clients may change during the training process. Such an intermittent client availability model would significantly deteriorate the performance of the classical Federated Averaging algorithm (FedAvg for short). We propose a simple distributed non-convex optimization algorithm, called Federated Latest Averaging (FedLaAvg for short), which leverages the latest gradients of all clients, even when the clients are not available, to jointly update the global model in each iteration. Our theoretical analysis shows that FedLaAvg attains the convergence rate of $O(1/(N^{1/4} T^{1/2}))$, achieving a sublinear speedup with respect to the total number of clients. We implement and evaluate FedLaAvg with the CIFAR-10 dataset. The evaluation results demonstrate that FedLaAvg indeed reaches a sublinear speedup and achieves 4.23% higher test accuracy than FedAvg.

北京阿比特科技有限公司