亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Unsupervised Domain Adaptation (UDA) and domain generalization (DG) are two research areas that aim to tackle the lack of generalization of Deep Neural Networks (DNNs) towards unseen domains. While UDA methods have access to unlabeled target images, domain generalization does not involve any target data and only learns generalized features from a source domain. Image-style randomization or augmentation is a popular approach to improve network generalization without access to the target domain. Complex methods are often proposed that disregard the potential of simple image augmentations for out-of-domain generalization. For this reason, we systematically study the in- and out-of-domain generalization capabilities of simple, rule-based image augmentations like blur, noise, color jitter and many more. Based on a full factorial design of experiment design we provide a systematic statistical evaluation of augmentations and their interactions. Our analysis provides both, expected and unexpected, outcomes. Expected, because our experiments confirm the common scientific standard that combination of multiple different augmentations out-performs single augmentations. Unexpected, because combined augmentations perform competitive to state-of-the-art domain generalization approaches, while being significantly simpler and without training overhead. On the challenging synthetic-to-real domain shift between Synthia and Cityscapes we reach 39.5% mIoU compared to 40.9% mIoU of the best previous work. When additionally employing the recent vision transformer architecture DAFormer we outperform these benchmarks with a performance of 44.2% mIoU

相關內容

Deep learning-based medical image segmentation models suffer from performance degradation when deployed to a new healthcare center. To address this issue, unsupervised domain adaptation and multi-source domain generalization methods have been proposed, which, however, are less favorable for clinical practice due to the cost of acquiring target-domain data and the privacy concerns associated with redistributing the data from multiple source domains. In this paper, we propose a \textbf{C}hannel-level \textbf{C}ontrastive \textbf{S}ingle \textbf{D}omain \textbf{G}eneralization (\textbf{C$^2$SDG}) model for medical image segmentation. In C$^2$SDG, the shallower features of each image and its style-augmented counterpart are extracted and used for contrastive training, resulting in the disentangled style representations and structure representations. The segmentation is performed based solely on the structure representations. Our method is novel in the contrastive perspective that enables channel-wise feature disentanglement using a single source domain. We evaluated C$^2$SDG against six SDG methods on a multi-domain joint optic cup and optic disc segmentation benchmark. Our results suggest the effectiveness of each module in C$^2$SDG and also indicate that C$^2$SDG outperforms the baseline and all competing methods with a large margin. The code will be available at \url{//github.com/ShishuaiHu/CCSDG}.

To cope with the high requirements during the computation of semantic segmentations of earth observation imagery, current state-of-the-art pipelines divide the corresponding data into smaller images. Existing methods and benchmark datasets oftentimes rely on pixel-based tiling schemes or on geo-tiling schemes employed by web mapping applications. The selection of subimages (comprising size, location and orientation) is crucial. It affects the available context information of each pixel, defines the number of tiles during training, and influences the degree of information degradation while down- and up-sampling the tile contents to the size required by the segmentation model. We propose a new segmentation pipeline for earth observation imagery relying on a tiling scheme that creates geo-tiles based on the geo-information of the raster data. This approach exhibits several beneficial properties compared to pixel-based or common web mapping approaches. The proposed tiling scheme shows flexible customization properties regarding tile granularity, tile stride and image boundary alignment. This allows us to perform a tile specific data augmentation during training and a substitution of pixel predictions with limited context information using data of overlapping tiles during inference. The generated tiles show a consistent spatial tile extent w.r.t. heterogeneous sensors, varying recording distances and different latitudes. We demonstrate how the proposed tiling system allows to improve the results of current state-of-the-art semantic segmentation models. To foster future research we make the source code publicly available.

This paper introduces an approach, named DFormer, for universal image segmentation. The proposed DFormer views universal image segmentation task as a denoising process using a diffusion model. DFormer first adds various levels of Gaussian noise to ground-truth masks, and then learns a model to predict denoising masks from corrupted masks. Specifically, we take deep pixel-level features along with the noisy masks as inputs to generate mask features and attention masks, employing diffusion-based decoder to perform mask prediction gradually. At inference, our DFormer directly predicts the masks and corresponding categories from a set of randomly-generated masks. Extensive experiments reveal the merits of our proposed contributions on different image segmentation tasks: panoptic segmentation, instance segmentation, and semantic segmentation. Our DFormer outperforms the recent diffusion-based panoptic segmentation method Pix2Seq-D with a gain of 3.6% on MS COCO val2017 set. Further, DFormer achieves promising semantic segmentation performance outperforming the recent diffusion-based method by 2.2% on ADE20K val set. Our source code and models will be publicly on //github.com/cp3wan/DFormer

Generative modeling has been the dominant approach for large-scale pretraining and zero-shot generalization. In this work, we challenge this convention by showing that discriminative approaches perform substantially better than generative ones on a large number of NLP tasks. Technically, we train a single discriminator to predict whether a text sample comes from the true data distribution, similar to GANs. Since many NLP tasks can be formulated as selecting from a few options, we use this discriminator to predict the concatenation of input and which option has the highest probability of coming from the true data distribution. This simple formulation achieves state-of-the-art zero-shot results on the T0 benchmark, outperforming T0 by 16.0\%, 7.8\%, and 11.5\% respectively on different scales. In the finetuning setting, our approach also achieves new state-of-the-art results on a wide range of NLP tasks, with only 1/4 parameters of previous methods. Meanwhile, our approach requires minimal prompting efforts, which largely improves robustness and is essential for real-world applications. Furthermore, we also jointly train a generalized UD in combination with generative tasks, which maintains its advantage on discriminative tasks and simultaneously works on generative tasks.

Deep long-tailed learning, one of the most challenging problems in visual recognition, aims to train well-performing deep models from a large number of images that follow a long-tailed class distribution. In the last decade, deep learning has emerged as a powerful recognition model for learning high-quality image representations and has led to remarkable breakthroughs in generic visual recognition. However, long-tailed class imbalance, a common problem in practical visual recognition tasks, often limits the practicality of deep network based recognition models in real-world applications, since they can be easily biased towards dominant classes and perform poorly on tail classes. To address this problem, a large number of studies have been conducted in recent years, making promising progress in the field of deep long-tailed learning. Considering the rapid evolution of this field, this paper aims to provide a comprehensive survey on recent advances in deep long-tailed learning. To be specific, we group existing deep long-tailed learning studies into three main categories (i.e., class re-balancing, information augmentation and module improvement), and review these methods following this taxonomy in detail. Afterward, we empirically analyze several state-of-the-art methods by evaluating to what extent they address the issue of class imbalance via a newly proposed evaluation metric, i.e., relative accuracy. We conclude the survey by highlighting important applications of deep long-tailed learning and identifying several promising directions for future research.

Leveraging datasets available to learn a model with high generalization ability to unseen domains is important for computer vision, especially when the unseen domain's annotated data are unavailable. We study a novel and practical problem of Open Domain Generalization (OpenDG), which learns from different source domains to achieve high performance on an unknown target domain, where the distributions and label sets of each individual source domain and the target domain can be different. The problem can be generally applied to diverse source domains and widely applicable to real-world applications. We propose a Domain-Augmented Meta-Learning framework to learn open-domain generalizable representations. We augment domains on both feature-level by a new Dirichlet mixup and label-level by distilled soft-labeling, which complements each domain with missing classes and other domain knowledge. We conduct meta-learning over domains by designing new meta-learning tasks and losses to preserve domain unique knowledge and generalize knowledge across domains simultaneously. Experiment results on various multi-domain datasets demonstrate that the proposed Domain-Augmented Meta-Learning (DAML) outperforms prior methods for unseen domain recognition.

Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.

Deep learning-based semi-supervised learning (SSL) algorithms have led to promising results in medical images segmentation and can alleviate doctors' expensive annotations by leveraging unlabeled data. However, most of the existing SSL algorithms in literature tend to regularize the model training by perturbing networks and/or data. Observing that multi/dual-task learning attends to various levels of information which have inherent prediction perturbation, we ask the question in this work: can we explicitly build task-level regularization rather than implicitly constructing networks- and/or data-level perturbation-and-transformation for SSL? To answer this question, we propose a novel dual-task-consistency semi-supervised framework for the first time. Concretely, we use a dual-task deep network that jointly predicts a pixel-wise segmentation map and a geometry-aware level set representation of the target. The level set representation is converted to an approximated segmentation map through a differentiable task transform layer. Simultaneously, we introduce a dual-task consistency regularization between the level set-derived segmentation maps and directly predicted segmentation maps for both labeled and unlabeled data. Extensive experiments on two public datasets show that our method can largely improve the performance by incorporating the unlabeled data. Meanwhile, our framework outperforms the state-of-the-art semi-supervised medical image segmentation methods. Code is available at: //github.com/Luoxd1996/DTC

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.

Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.

北京阿比特科技有限公司