亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Let $K$ be a $k$-dimensional simplicial complex having $n$ faces of dimension $k$ and $M$ a closed $(k-1)$-connected PL $2k$-dimensional manifold. We prove that for $k\ge3$ odd $K$ embeds into $M$ if and only if there are $\bullet$ a skew-symmetric $n\times n$-matrix $A$ with $\mathbb Z$-entries whose rank over $\mathbb Q$ does not exceed $rk H_k(M;\mathbb Z)$, $\bullet$ a general position PL map $f:K\to\mathbb R^{2k}$, and $\bullet$ a collection of orientations on $k$-faces of $K$ such that for any nonadjacent $k$-faces $\sigma,\tau$ of $K$ the element $A_{\sigma,\tau}$ equals to the algebraic intersection of $f\sigma$ and $f\tau$. We prove some analogues of this result including those for $\mathbb Z_2$- and $\mathbb Z$-embeddability. Our results generalize the Bikeev-Fulek-Kyn\v cl-Schaefer-Stefankovi\v c criteria for the $\mathbb Z_2$- and $\mathbb Z$-embeddability of graphs to surfaces, and are related to the Harris-Krushkal-Johnson-Pat\'ak-Tancer criteria for the embeddability of $k$-complexes into $2k$-manifolds.

相關內容

Center-based clustering is a pivotal primitive for unsupervised learning and data analysis. A popular variant is undoubtedly the k-means problem, which, given a set $P$ of points from a metric space and a parameter $k<|P|$, requires to determine a subset $S$ of $k$ centers minimizing the sum of all squared distances of points in $P$ from their closest center. A more general formulation, known as k-means with $z$ outliers, introduced to deal with noisy datasets, features a further parameter $z$ and allows up to $z$ points of $P$ (outliers) to be disregarded when computing the aforementioned sum. We present a distributed coreset-based 3-round approximation algorithm for k-means with $z$ outliers for general metric spaces, using MapReduce as a computational model. Our distributed algorithm requires sublinear local memory per reducer, and yields a solution whose approximation ratio is an additive term $O(\gamma)$ away from the one achievable by the best known sequential (possibly bicriteria) algorithm, where $\gamma$ can be made arbitrarily small. An important feature of our algorithm is that it obliviously adapts to the intrinsic complexity of the dataset, captured by the doubling dimension $D$ of the metric space. To the best of our knowledge, no previous distributed approaches were able to attain similar quality-performance tradeoffs for general metrics.

A Bohemian matrix family is a set of matrices all of whose entries are drawn from a fixed, usually discrete and hence bounded, subset of a field of characteristic zero. Originally these were integers -- hence the name, from the acronym BOunded HEight Matrix of Integers (BOHEMI) -- but other kinds of entries are also interesting. Some kinds of questions about Bohemian matrices can be answered by numerical computation, but sometimes exact computation is better. In this paper we explore some Bohemian families (symmetric, upper Hessenberg, or Toeplitz) computationally, and answer some open questions posed about the distributions of eigenvalue densities.

Let $\mathcal{G}$ be a directed graph with vertices $1,2,\ldots, 2N$. Let $\mathcal{T}=(T_{i,j})_{(i,j)\in\mathcal{G}}$ be a family of contractive similarity mappings. For every $1\leq i\leq N$, let $i^+:=i+N$. Let $\mathcal{M}_{i,j}=\{(i,j),(i,j^+),(i^+,j),(i^+,j^+)\}\cap\mathcal{G}$. We assume that $T_{\widetilde{i},\widetilde{j}}=T_{i,j}$ for every $(\widetilde{i},\widetilde{j})\in \mathcal{M}_{i,j}$. Let $K$ denote the Mauldin-Williams fractal determined by $\mathcal{T}$. Let $\chi=(\chi_i)_{i=1}^{2N}$ be a positive probability vector and $P$ a row-stochastic matrix which serves as an incidence matrix for $\mathcal{G}$. Let $\nu$ be the Markov-type measure associated with $\chi$ and $P$. Let $\Omega=\{1,\ldots,2N\}$ and $G_\infty=\{\sigma\in\Omega^{\mathbb{N}}:(\sigma_i,\sigma_{i+1})\in\mathcal{G}, \;i\geq 1\}$. Let $\pi$ be the natural projection from $G_\infty$ to $K$ and $\mu=\nu\circ\pi^{-1}$. We consider two cases: 1. $\mathcal{G}$ has two strongly connected components consisting of $N$ vertices; 2. $\mathcal{G}$ is strongly connected. With some assumptions for $\mathcal{G}$ and $\mathcal{T}$, for case 1, we determine the exact value $s_r$ of $D_r(\mu)$ and prove that the $s_r$-dimensional lower quantization coefficient $\underline{Q}_r^{s_r}(\mu)$ is always positive, but the upper one $\overline{Q}_r^{s_r}(\mu)$ can be infinite; we establish a necessary and sufficient condition for $\overline{Q}_r^{s_r}(\mu)$ to be finite; for case 2, we determine $D_r(\mu)=:t_r$ by means of a pressure-like function and prove that $\underline{Q}_r^{t_r}(\mu)$ and $\overline{Q}_r^{t_r}(\mu)$ are always positive and finite.

In this paper we treat statistical inference for an intrinsic wavelet estimator of curves of symmetric positive definite (SPD) matrices in a log-Euclidean manifold. This estimator preserves positive-definiteness and enjoys permutation-equivariance, which is particularly relevant for covariance matrices. Our second-generation wavelet estimator is based on average-interpolation and allows the same powerful properties, including fast algorithms, known from nonparametric curve estimation with wavelets in standard Euclidean set-ups. The core of our work is the proposition of confidence sets for our high-level wavelet estimator in a non-Euclidean geometry. We derive asymptotic normality of this estimator, including explicit expressions of its asymptotic variance. This opens the door for constructing asymptotic confidence regions which we compare with our proposed bootstrap scheme for inference. Detailed numerical simulations confirm the appropriateness of our suggested inference schemes.

A triangle in a hypergraph $\mathcal{H}$ is a set of three distinct edges $e, f, g\in\mathcal{H}$ and three distinct vertices $u, v, w\in V(\mathcal{H})$ such that $\{u, v\}\subseteq e$, $\{v, w\}\subseteq f$, $\{w, u\}\subseteq g$ and $\{u, v, w\}\cap e\cap f\cap g=\emptyset$. Johansson proved in 1996 that $\chi(G)=\mathcal{O}(\Delta/\log\Delta)$ for any triangle-free graph $G$ with maximum degree $\Delta$. Cooper and Mubayi later generalized the Johansson's theorem to all rank $3$ hypergraphs. In this paper we provide a common generalization of both these results for all hypergraphs, showing that if $\mathcal{H}$ is a rank $k$, triangle-free hypergraph, then the list chromatic number \[ \chi_{\ell}(\mathcal{H})\leq \mathcal{O}\left(\max_{2\leq \ell \leq k} \left\{\left( \frac{\Delta_{\ell}}{\log \Delta_{\ell}} \right)^{\frac{1}{\ell-1}} \right\}\right), \] where $\Delta_{\ell}$ is the maximum $\ell$-degree of $\mathcal{H}$. The result is sharp apart from the constant. Moreover, our result implies, generalizes and improves several earlier results on the chromatic number and also independence number of hypergraphs, while its proof is based on a different approach than prior works in hypergraphs (and therefore provides alternative proofs to them). In particular, as an application, we establish a bound on chromatic number of sparse hypergraphs in which each vertex is contained in few triangles, and thus extend results of Alon, Krivelevich and Sudakov, and Cooper and Mubayi from hypergraphs of rank 2 and 3, respectively, to all hypergraphs.

Many applications, such as system identification, classification of time series, direct and inverse problems in partial differential equations, and uncertainty quantification lead to the question of approximation of a non-linear operator between metric spaces $\mathfrak{X}$ and $\mathfrak{Y}$. We study the problem of determining the degree of approximation of a such operators on a compact subset $K_\mathfrak{X}\subset \mathfrak{X}$ using a finite amount of information. If $\mathcal{F}: K_\mathfrak{X}\to K_\mathfrak{Y}$, a well established strategy to approximate $\mathcal{F}(F)$ for some $F\in K_\mathfrak{X}$ is to encode $F$ (respectively, $\mathcal{F}(F)$) in terms of a finite number $d$ (repectively $m$) of real numbers. Together with appropriate reconstruction algorithms (decoders), the problem reduces to the approximation of $m$ functions on a compact subset of a high dimensional Euclidean space $\mathbb{R}^d$, equivalently, the unit sphere $\mathbb{S}^d$ embedded in $\mathbb{R}^{d+1}$. The problem is challenging because $d$, $m$, as well as the complexity of the approximation on $\mathbb{S}^d$ are all large, and it is necessary to estimate the accuracy keeping track of the inter-dependence of all the approximations involved. In this paper, we establish constructive methods to do this efficiently; i.e., with the constants involved in the estimates on the approximation on $\\mathbb{S}^d$ being $\mathcal{O}(d^{1/6})$. We study different smoothness classes for the operators, and also propose a method for approximation of $\mathcal{F}(F)$ using only information in a small neighborhood of $F$, resulting in an effective reduction in the number of parameters involved. To further mitigate the problem of large number of parameters, we propose prefabricated networks, resulting in a substantially smaller number of effective parameters.

Triangular decomposition with different properties has been used for various types of problem solving, e.g. geometry theorem proving, real solution isolation of zero-dimensional polynomial systems, etc. In this paper, the concepts of strong chain and square-free strong triangular decomposition (SFSTD) of zero-dimensional polynomial systems are defined. Because of its good properties, SFSTD may be a key way to many problems related to zero-dimensional polynomial systems, such as real solution isolation and computing radicals of zero-dimensional ideals. Inspired by the work of Wang and of Dong and Mou, we propose an algorithm for computing SFSTD based on Gr\"obner bases computation. The novelty of the algorithm is that we make use of saturated ideals and separant to ensure that the zero sets of any two strong chains have no intersection and every strong chain is square-free, respectively. On one hand, we prove that the arithmetic complexity of the new algorithm can be single exponential in the square of the number of variables, which seems to be among the rare complexity analysis results for triangular-decomposition methods. On the other hand, we show experimentally that, on a large number of examples in the literature, the new algorithm is far more efficient than a popular triangular-decomposition method based on pseudo-division. Furthermore, it is also shown that, on those examples, the methods based on SFSTD for real solution isolation and for computing radicals of zero-dimensional ideals are very efficient.

In this paper we study temporal design problems of undirected temporally connected graphs. The basic setting of these optimization problems is as follows: given an undirected graph $G$, what is the smallest number $|\lambda|$ of time-labels that we need to add to the edges of $G$ such that the resulting temporal graph $(G,\lambda)$ is temporally connected? As we prove, this basic problem, called MINIMUM LABELING, can be optimally solved in polynomial time, thus resolving an open question. The situation becomes however more complicated if we strengthen, or even if we relax a bit, the requirement of temporal connectivity of $(G,\lambda)$. One way to strengthen the temporal connectivity requirements is to upper-bound the allowed age (i.e., maximum label) of the obtained temporal graph $(G,\lambda)$. On the other hand, we can relax temporal connectivity by only requiring that there exists a temporal path between any pair of ``important'' vertices which lie in a subset $R\subseteq V$, which we call the terminals. This relaxed problem, called MINIMUM STEINER LABELING, resembles the problem STEINER TREE in static (i.e., non-temporal) graphs; however, as it turns out, STEINER TREE is not a special case of MINIMUM STEINER LABELING. We prove that MINIMUM STEINER LABELING is NP-hard and in FPT with respect to the number $|R|$ of terminals. Moreover, we prove that, adding the age restriction makes the above problems strictly harder (unless P=NP or W[1]=FPT). More specifically, we prove that the age-restricted version of MINIMUM LABELING becomes NP-complete on undirected graphs, while the age-restricted version of MINIMUM STEINER LABELING becomes W[1]-hard with respect to the number $|R|$ of terminals.

We study the problem of sampling almost uniform proper $q$-colourings in $k$-uniform simple hypergraphs with maximum degree $\Delta$. For any $\delta > 0$, if $k \geq\frac{20(1+\delta)}{\delta}$ and $q \geq 100\Delta^{\frac{2+\delta}{k-4/\delta-4}}$, the running time of our algorithm is $\tilde{O}(\mathrm{poly}(\Delta k)\cdot n^{1.01})$, where $n$ is the number of vertices. Our result requires fewer colours than previous results for general hypergraphs (Jain, Pham, and Voung, 2021; He, Sun, and Wu, 2021), and does not require $\Omega(\log n)$ colours unlike the work of Frieze and Anastos (2017).

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

北京阿比特科技有限公司