亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Let $\mathcal{G}$ be a directed graph with vertices $1,2,\ldots, 2N$. Let $\mathcal{T}=(T_{i,j})_{(i,j)\in\mathcal{G}}$ be a family of contractive similarity mappings. For every $1\leq i\leq N$, let $i^+:=i+N$. Let $\mathcal{M}_{i,j}=\{(i,j),(i,j^+),(i^+,j),(i^+,j^+)\}\cap\mathcal{G}$. We assume that $T_{\widetilde{i},\widetilde{j}}=T_{i,j}$ for every $(\widetilde{i},\widetilde{j})\in \mathcal{M}_{i,j}$. Let $K$ denote the Mauldin-Williams fractal determined by $\mathcal{T}$. Let $\chi=(\chi_i)_{i=1}^{2N}$ be a positive probability vector and $P$ a row-stochastic matrix which serves as an incidence matrix for $\mathcal{G}$. Let $\nu$ be the Markov-type measure associated with $\chi$ and $P$. Let $\Omega=\{1,\ldots,2N\}$ and $G_\infty=\{\sigma\in\Omega^{\mathbb{N}}:(\sigma_i,\sigma_{i+1})\in\mathcal{G}, \;i\geq 1\}$. Let $\pi$ be the natural projection from $G_\infty$ to $K$ and $\mu=\nu\circ\pi^{-1}$. We consider two cases: 1. $\mathcal{G}$ has two strongly connected components consisting of $N$ vertices; 2. $\mathcal{G}$ is strongly connected. With some assumptions for $\mathcal{G}$ and $\mathcal{T}$, for case 1, we determine the exact value $s_r$ of $D_r(\mu)$ and prove that the $s_r$-dimensional lower quantization coefficient $\underline{Q}_r^{s_r}(\mu)$ is always positive, but the upper one $\overline{Q}_r^{s_r}(\mu)$ can be infinite; we establish a necessary and sufficient condition for $\overline{Q}_r^{s_r}(\mu)$ to be finite; for case 2, we determine $D_r(\mu)=:t_r$ by means of a pressure-like function and prove that $\underline{Q}_r^{t_r}(\mu)$ and $\overline{Q}_r^{t_r}(\mu)$ are always positive and finite.

相關內容

Although robust learning and local differential privacy are both widely studied fields of research, combining the two settings is just starting to be explored. We consider the problem of estimating a discrete distribution in total variation from $n$ contaminated data batches under a local differential privacy constraint. A fraction $1-\epsilon$ of the batches contain $k$ i.i.d. samples drawn from a discrete distribution $p$ over $d$ elements. To protect the users' privacy, each of the samples is privatized using an $\alpha$-locally differentially private mechanism. The remaining $\epsilon n $ batches are an adversarial contamination. The minimax rate of estimation under contamination alone, with no privacy, is known to be $\epsilon/\sqrt{k}+\sqrt{d/kn}$, up to a $\sqrt{\log(1/\epsilon)}$ factor. Under the privacy constraint alone, the minimax rate of estimation is $\sqrt{d^2/\alpha^2 kn}$. We show that combining the two constraints leads to a minimax estimation rate of $\epsilon\sqrt{d/\alpha^2 k}+\sqrt{d^2/\alpha^2 kn}$ up to a $\sqrt{\log(1/\epsilon)}$ factor, larger than the sum of the two separate rates. We provide a polynomial-time algorithm achieving this bound, as well as a matching information theoretic lower bound.

Given a set $P$ of $n$ points in the plane, the $k$-center problem is to find $k$ congruent disks of minimum possible radius such that their union covers all the points in $P$. The $2$-center problem is a special case of the $k$-center problem that has been extensively studied in the recent past \cite{CAHN,HT,SH}. In this paper, we consider a generalized version of the $2$-center problem called \textit{proximity connected} $2$-center (PCTC) problem. In this problem, we are also given a parameter $\delta\geq 0$ and we have the additional constraint that the distance between the centers of the disks should be at most $\delta$. Note that when $\delta=0$, the PCTC problem is reduced to the $1$-center(minimum enclosing disk) problem and when $\delta$ tends to infinity, it is reduced to the $2$-center problem. The PCTC problem first appeared in the context of wireless networks in 1992 \cite{ACN0}, but obtaining a nontrivial deterministic algorithm for the problem remained open. In this paper, we resolve this open problem by providing a deterministic $O(n^2\log n)$ time algorithm for the problem.

We study the problem of testing whether a function $f: \mathbb{R}^n \to \mathbb{R}$ is a polynomial of degree at most $d$ in the \emph{distribution-free} testing model. Here, the distance between functions is measured with respect to an unknown distribution $\mathcal{D}$ over $\mathbb{R}^n$ from which we can draw samples. In contrast to previous work, we do not assume that $\mathcal{D}$ has finite support. We design a tester that given query access to $f$, and sample access to $\mathcal{D}$, makes $(d/\varepsilon)^{O(1)}$ many queries to $f$, accepts with probability $1$ if $f$ is a polynomial of degree $d$, and rejects with probability at least $2/3$ if every degree-$d$ polynomial $P$ disagrees with $f$ on a set of mass at least $\varepsilon$ with respect to $\mathcal{D}$. Our result also holds under mild assumptions when we receive only a polynomial number of bits of precision for each query to $f$, or when $f$ can only be queried on rational points representable using a logarithmic number of bits. Along the way, we prove a new stability theorem for multivariate polynomials that may be of independent interest.

We consider the problem of nonparametric estimation of the drift and diffusion coefficients of a Stochastic Differential Equation (SDE), based on $n$ independent replicates $\left\{X_i(t)\::\: t\in [0,1]\right\}_{1 \leq i \leq n}$, observed sparsely and irregularly on the unit interval, and subject to additive noise corruption. By \textit{sparse} we intend to mean that the number of measurements per path can be arbitrary (as small as two), and remain constant with respect to $n$. We focus on time-inhomogeneous SDE of the form $dX_t = \mu(t)X_t^{\alpha}dt + \sigma(t)X_t^{\beta}dW_t$, where $\alpha \in \{0,1\}$ and $\beta \in \{0,1/2,1\}$, which includes prominent examples such as Brownian motion, Ornstein-Uhlenbeck process, geometric Brownian motion, and Brownian bridge. Our estimators are constructed by relating the local (drift/diffusion) parameters of the diffusion to their global parameters (mean/covariance, and their derivatives) by means of an apparently novel PDE. This allows us to use methods inspired by functional data analysis, and pool information across the sparsely measured paths. The methodology we develop is fully non-parametric and avoids any functional form specification on the time-dependency of either the drift function or the diffusion function. We establish almost sure uniform asymptotic convergence rates of the proposed estimators as the number of observed curves $n$ grows to infinity. Our rates are non-asymptotic in the number of measurements per path, explicitly reflecting how different sampling frequency might affect the speed of convergence. Our framework suggests possible further fruitful interactions between FDA and SDE methods in problems with replication.

Weighted automata are a generalization of nondeterministic automata that associate a weight drawn from a semiring $K$ with every transition and every state. Their behaviours can be formalized either as weighted language equivalence or weighted bisimulation. In this paper we explore the properties of weighted automata in the framework of coalgebras over (i) the category $\mathsf{SMod}$ of semimodules over a semiring $K$ and $K$-linear maps, and (ii) the category $\mathsf{Set}$ of sets and maps. We show that the behavioural equivalences defined by the corresponding final coalgebras in these two cases characterize weighted language equivalence and weighted bisimulation, respectively. These results extend earlier work by Bonchi et al. using the category $\mathsf{Vect}$ of vector spaces and linear maps as the underlying model for weighted automata with weights drawn from a field $K$. The key step in our work is generalizing the notions of linear relation and linear bisimulation of Boreale from vector spaces to semimodules using the concept of the kernel of a $K$-linear map in the sense of universal algebra. We also provide an abstract procedure for forward partition refinement for computing weighted language equivalence. Since for weighted automata defined over semirings the problem is undecidable in general, it is guaranteed to halt only in special cases. We provide sufficient conditions for the termination of our procedure. Although the results are similar to those of Bonchi et al., many of our proofs are new, especially those about the coalgebra in $\mathsf{SMod}$ characterizing weighted language equivalence.

We provide a decision theoretic analysis of bandit experiments. The setting corresponds to a dynamic programming problem, but solving this directly is typically infeasible. Working within the framework of diffusion asymptotics, we define suitable notions of asymptotic Bayes and minimax risk for bandit experiments. For normally distributed rewards, the minimal Bayes risk can be characterized as the solution to a nonlinear second-order partial differential equation (PDE). Using a limit of experiments approach, we show that this PDE characterization also holds asymptotically under both parametric and non-parametric distribution of the rewards. The approach further describes the state variables it is asymptotically sufficient to restrict attention to, and therefore suggests a practical strategy for dimension reduction. The upshot is that we can approximate the dynamic programming problem defining the bandit experiment with a PDE which can be efficiently solved using sparse matrix routines. We derive the optimal Bayes and minimax policies from the numerical solutions to these equations. The proposed policies substantially dominate existing methods such as Thompson sampling. The framework also allows for substantial generalizations to the bandit problem such as time discounting and pure exploration motives.

In this short note, we show that for any $\epsilon >0$ and $k<n^{0.5-\epsilon}$ the choice number of the Kneser graph $KG_{n,k}$ is $\Theta (n\log n)$.

Let $X^{(n)}$ be an observation sampled from a distribution $P_{\theta}^{(n)}$ with an unknown parameter $\theta,$ $\theta$ being a vector in a Banach space $E$ (most often, a high-dimensional space of dimension $d$). We study the problem of estimation of $f(\theta)$ for a functional $f:E\mapsto {\mathbb R}$ of some smoothness $s>0$ based on an observation $X^{(n)}\sim P_{\theta}^{(n)}.$ Assuming that there exists an estimator $\hat \theta_n=\hat \theta_n(X^{(n)})$ of parameter $\theta$ such that $\sqrt{n}(\hat \theta_n-\theta)$ is sufficiently close in distribution to a mean zero Gaussian random vector in $E,$ we construct a functional $g:E\mapsto {\mathbb R}$ such that $g(\hat \theta_n)$ is an asymptotically normal estimator of $f(\theta)$ with $\sqrt{n}$ rate provided that $s>\frac{1}{1-\alpha}$ and $d\leq n^{\alpha}$ for some $\alpha\in (0,1).$ We also derive general upper bounds on Orlicz norm error rates for estimator $g(\hat \theta)$ depending on smoothness $s,$ dimension $d,$ sample size $n$ and the accuracy of normal approximation of $\sqrt{n}(\hat \theta_n-\theta).$ In particular, this approach yields asymptotically efficient estimators in some high-dimensional exponential models.

Universal coding of integers~(UCI) is a class of variable-length code, such that the ratio of the expected codeword length to $\max\{1,H(P)\}$ is within a constant factor, where $H(P)$ is the Shannon entropy of the decreasing probability distribution $P$. However, if we consider the ratio of the expected codeword length to $H(P)$, the ratio tends to infinity by using UCI, when $H(P)$ tends to zero. To solve this issue, this paper introduces a class of codes, termed generalized universal coding of integers~(GUCI), such that the ratio of the expected codeword length to $H(P)$ is within a constant factor $K$. First, the definition of GUCI is proposed and the coding structure of GUCI is introduced. Next, we propose a class of GUCI $\mathcal{C}$ to achieve the expansion factor $K_{\mathcal{C}}=2$ and show that the optimal GUCI is in the range $1\leq K_{\mathcal{C}}^{*}\leq 2$. Then, by comparing UCI and GUCI, we show that when the entropy is very large or $P(0)$ is not large, there are also cases where the average codeword length of GUCI is shorter. Finally, the asymptotically optimal GUCI is presented.

It is shown, with two sets of indicators that separately load on two distinct factors, independent of one another conditional on the past, that if it is the case that at least one of the factors causally affects the other, then, in many settings, the process will converge to a factor model in which a single factor will suffice to capture the covariance structure among the indicators. Factor analysis with one wave of data can then not distinguish between factor models with a single factor versus those with two factors that are causally related. Therefore, unless causal relations between factors can be ruled out a priori, alleged empirical evidence from one-wave factor analysis for a single factor still leaves open the possibilities of a single factor or of two factors that causally affect one another. The implications for interpreting the factor structure of psychological scales, such as self-report scales for anxiety and depression, or for happiness and purpose, are discussed. The results are further illustrated through simulations to gain insight into the practical implications of the results in more realistic settings prior to the convergence of the processes. Some further generalizations to an arbitrary number of underlying factors are noted.

北京阿比特科技有限公司