Algorithmic bias often arises as a result of differential subgroup validity, in which predictive relationships vary across groups. For example, in toxic language detection, comments targeting different demographic groups can vary markedly across groups. In such settings, trained models can be dominated by the relationships that best fit the majority group, leading to disparate performance. We propose framing toxicity detection as multi-task learning (MTL), allowing a model to specialize on the relationships that are relevant to each demographic group while also leveraging shared properties across groups. With toxicity detection, each task corresponds to identifying toxicity against a particular demographic group. However, traditional MTL requires labels for all tasks to be present for every data point. To address this, we propose Conditional MTL (CondMTL), wherein only training examples relevant to the given demographic group are considered by the loss function. This lets us learn group specific representations in each branch which are not cross contaminated by irrelevant labels. Results on synthetic and real data show that using CondMTL improves predictive recall over various baselines in general and for the minority demographic group in particular, while having similar overall accuracy.
Face morphing attack detection is emerging as an increasingly challenging problem owing to advancements in high-quality and realistic morphing attack generation. Reliable detection of morphing attacks is essential because these attacks are targeted for border control applications. This paper presents a multispectral framework for differential morphing-attack detection (D-MAD). The D-MAD methods are based on using two facial images that are captured from the ePassport (also called the reference image) and the trusted device (for example, Automatic Border Control (ABC) gates) to detect whether the face image presented in ePassport is morphed. The proposed multispectral D-MAD framework introduce a multispectral image captured as a trusted capture to capture seven different spectral bands to detect morphing attacks. Extensive experiments were conducted on the newly created datasets with 143 unique data subjects that were captured using both visible and multispectral cameras in multiple sessions. The results indicate the superior performance of the proposed multispectral framework compared to visible images.
We propose an efficient online kernel Cumulative Sum (CUSUM) method for change-point detection that utilizes the maximum over a set of kernel statistics to account for the unknown change-point location. Our approach exhibits increased sensitivity to small changes compared to existing methods, such as the Scan-B statistic, which corresponds to a non-parametric Shewhart chart-type procedure. We provide accurate analytic approximations for two key performance metrics: the Average Run Length (ARL) and Expected Detection Delay (EDD), which enable us to establish an optimal window length on the order of the logarithm of ARL to ensure minimal power loss relative to an oracle procedure with infinite memory. Such a finding parallels the classic result for window-limited Generalized Likelihood Ratio (GLR) procedure in parametric change-point detection literature. Moreover, we introduce a recursive calculation procedure for detection statistics to ensure constant computational and memory complexity, which is essential for online procedures. Through extensive experiments on simulated data and a real-world human activity dataset, we demonstrate the competitive performance of our method and validate our theoretical results.
Machine Translation systems can produce different types of errors, some of which are characterized as critical or catastrophic due to the specific negative impact that they can have on users. In this paper we focus on one type of critical error: added toxicity. We evaluate and analyze added toxicity when translating a large evaluation dataset (HOLISTICBIAS, over 472k sentences, covering 13 demographic axes) from English into 164 languages. An automatic toxicity evaluation shows that added toxicity across languages varies from 0% to 5%. The output languages with the most added toxicity tend to be low-resource ones, and the demographic axes with the most added toxicity include sexual orientation, gender and sex, and ability. We also perform human evaluation on a subset of 8 translation directions, confirming the prevalence of true added toxicity. We use a measurement of the amount of source contribution to the translation, where a low source contribution implies hallucination, to interpret what causes toxicity. Making use of the input attributions allows us to explain toxicity, because the source contributions significantly correlate with toxicity for 84% of languages studied. Given our findings, our recommendations to reduce added toxicity are to curate training data to avoid mistranslations, mitigate hallucination and check unstable translations.
The representation learning problem in the oil & gas industry aims to construct a model that provides a representation based on logging data for a well interval. Previous attempts are mainly supervised and focus on similarity task, which estimates closeness between intervals. We desire to build informative representations without using supervised (labelled) data. One of the possible approaches is self-supervised learning (SSL). In contrast to the supervised paradigm, this one requires little or no labels for the data. Nowadays, most SSL approaches are either contrastive or non-contrastive. Contrastive methods make representations of similar (positive) objects closer and distancing different (negative) ones. Due to possible wrong marking of positive and negative pairs, these methods can provide an inferior performance. Non-contrastive methods don't rely on such labelling and are widespread in computer vision. They learn using only pairs of similar objects that are easier to identify in logging data. We are the first to introduce non-contrastive SSL for well-logging data. In particular, we exploit Bootstrap Your Own Latent (BYOL) and Barlow Twins methods that avoid using negative pairs and focus only on matching positive pairs. The crucial part of these methods is an augmentation strategy. Our augmentation strategies and adaption of BYOL and Barlow Twins together allow us to achieve superior quality on clusterization and mostly the best performance on different classification tasks. Our results prove the usefulness of the proposed non-contrastive self-supervised approaches for representation learning and interval similarity in particular.
Human evaluation is critical for validating the performance of text-to-image generative models, as this highly cognitive process requires deep comprehension of text and images. However, our survey of 37 recent papers reveals that many works rely solely on automatic measures (e.g., FID) or perform poorly described human evaluations that are not reliable or repeatable. This paper proposes a standardized and well-defined human evaluation protocol to facilitate verifiable and reproducible human evaluation in future works. In our pilot data collection, we experimentally show that the current automatic measures are incompatible with human perception in evaluating the performance of the text-to-image generation results. Furthermore, we provide insights for designing human evaluation experiments reliably and conclusively. Finally, we make several resources publicly available to the community to facilitate easy and fast implementations.
Online social networks have become a fundamental component of our everyday life. Unfortunately, these platforms are also a stage for hate speech. Popular social networks have regularized rules against hate speech. Consequently, social networks like Parler and Gab advocating and claiming to be free speech platforms have evolved. These platforms have become a district for hate speech against diverse targets. We present in our paper a pipeline for detecting hate speech and its targets and use it for creating Parler hate targets' distribution. The pipeline consists of two models; one for hate speech detection and the second for target classification, both based on BERT with Back-Translation and data pre-processing for improved results. The source code used in this work, as well as other relevant sources, are available at: //github.com/NadavSc/HateRecognition.git
Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.
Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.
This paper focuses on two fundamental tasks of graph analysis: community detection and node representation learning, which capture the global and local structures of graphs, respectively. In the current literature, these two tasks are usually independently studied while they are actually highly correlated. We propose a probabilistic generative model called vGraph to learn community membership and node representation collaboratively. Specifically, we assume that each node can be represented as a mixture of communities, and each community is defined as a multinomial distribution over nodes. Both the mixing coefficients and the community distribution are parameterized by the low-dimensional representations of the nodes and communities. We designed an effective variational inference algorithm which regularizes the community membership of neighboring nodes to be similar in the latent space. Experimental results on multiple real-world graphs show that vGraph is very effective in both community detection and node representation learning, outperforming many competitive baselines in both tasks. We show that the framework of vGraph is quite flexible and can be easily extended to detect hierarchical communities.
Meta-learning extracts the common knowledge acquired from learning different tasks and uses it for unseen tasks. It demonstrates a clear advantage on tasks that have insufficient training data, e.g., few-shot learning. In most meta-learning methods, tasks are implicitly related via the shared model or optimizer. In this paper, we show that a meta-learner that explicitly relates tasks on a graph describing the relations of their output dimensions (e.g., classes) can significantly improve the performance of few-shot learning. This type of graph is usually free or cheap to obtain but has rarely been explored in previous works. We study the prototype based few-shot classification, in which a prototype is generated for each class, such that the nearest neighbor search between the prototypes produces an accurate classification. We introduce "Gated Propagation Network (GPN)", which learns to propagate messages between prototypes of different classes on the graph, so that learning the prototype of each class benefits from the data of other related classes. In GPN, an attention mechanism is used for the aggregation of messages from neighboring classes, and a gate is deployed to choose between the aggregated messages and the message from the class itself. GPN is trained on a sequence of tasks from many-shot to few-shot generated by subgraph sampling. During training, it is able to reuse and update previously achieved prototypes from the memory in a life-long learning cycle. In experiments, we change the training-test discrepancy and test task generation settings for thorough evaluations. GPN outperforms recent meta-learning methods on two benchmark datasets in all studied cases.