Bayesian P-splines and basis determination through Bayesian model selection are both commonly employed strategies for nonparametric regression using spline basis expansions within the Bayesian framework. Despite their widespread use, each method has particular limitations that may introduce potential estimation bias depending on the nature of the target function. To overcome the limitations associated with each method while capitalizing on their respective strengths, we propose a new prior distribution that integrates the essentials of both approaches. The proposed prior distribution assesses the complexity of the spline model based on a penalty term formed by a convex combination of the penalties from both methods. The proposed method exhibits adaptability to the unknown level of smoothness, while achieving the minimax-optimal posterior contraction rate up to a logarithmic factor. We provide an efficient Markov chain Monte Carlo algorithm for implementing the proposed approach. Our extensive simulation study reveals that the proposed method outperforms other competitors in terms of performance metrics or model complexity.
Quantum low-density parity-check (QLDPC) codes are among the most promising candidates for future quantum error correction schemes. However, a limited number of short to moderate-length QLDPC codes have been designed and their decoding performance is sub-optimal with a quaternary belief propagation (BP) decoder due to unavoidable short cycles in their Tanner graphs. In this paper, we propose a novel joint code and decoder design for QLDPC codes. The constructed codes have a minimum distance of about the square root of the block length. In addition, it is, to the best of our knowledge, the first QLDPC code family where BP decoding is not impaired by short cycles of length 4. This is achieved by using an ensemble BP decoder mitigating the influence of assembled short cycles. We outline two code construction methods based on classical quasi-cyclic codes and finite geometry codes. Numerical results demonstrate outstanding decoding performance over depolarizing channels.
The end-to-end ASR model is often desired in the streaming multilingual scenario since it is easier to deploy and can benefit from pre-trained speech models such as powerful foundation models. Meanwhile, the heterogeneous nature and imbalanced data abundance of different languages may cause performance degradation, leading to asynchronous peak performance for different languages during training, especially on tail ones. Sometimes even the data itself may become unavailable as a result of the enhanced privacy protection. Existing work tend to significantly increase the model size or learn language-specific decoders to accommodate each language separately. In this study, we explore simple yet effective Language-Dependent Adapter (LDA) finetuning under a cascaded Conformer transducer framework enhanced by teacher pseudo-labeling for tail languages in the streaming multilingual ASR. The adapter only accounts for 0.4% of the full model per language. It is plugged into the frozen foundation model and is the only trainable module during the finetuning process with noisy student training. The final model merges the adapter parameters from different checkpoints for different languages. The model performance is validated on a challenging multilingual dictation dataset, which includes 39 tail languages across Latin, Greek, Arabic, etc. Our proposed method brings 12.2% word error rate reduction on average and up to 37.5% on a single locale. Furthermore, we show that our parameter-efficient LDA can match the quality of the full model finetuning, thus greatly alleviating the asynchronous peak performance issue.
While including pairwise interactions in a regression model can better approximate response surface, fitting such an interaction model is a well-known difficult problem. In particular, analyzing contemporary high-dimensional datasets often leads to extremely large-scale interaction modeling problem, where the challenge is posed to identify important interactions among millions or even billions of candidate interactions. While several methods have recently been proposed to tackle this challenge, they are mostly designed by (1) assuming the hierarchy assumption among the important interactions and (or) (2) focusing on the case in linear models with interactions and (sub)Gaussian errors. In practice, however, neither of these two building blocks has to hold. In this paper, we propose an interaction modeling framework in generalized linear models (GLMs) which is free of any assumptions on hierarchy. We develop a non-trivial extension of the reluctance interaction selection principle to the GLMs setting, where a main effect is preferred over an interaction if all else is equal. Our proposed method is easy to implement, and is highly scalable to large-scale datasets. Theoretically, we demonstrate that it possesses screening consistency under high-dimensional setting. Numerical studies on simulated datasets and a real dataset show that the proposed method does not sacrifice statistical performance in the presence of significant computational gain.
Popular guidance for denoising diffusion probabilistic model (DDPM) linearly combines distinct conditional models together to provide enhanced control over samples. However, this approach overlooks nonlinear effects that become significant when guidance scale is large. To address this issue, we propose characteristic guidance, a sampling method that provides first-principle non-linear correction for classifier-free guided DDPMs. Such correction forces the guided DDPMs to respect the Fokker-Planck equation of their underlying diffusion process, in a way that is training-free, derivative-free, and compatible with existing sampling methods. Experiments show that characteristic guidance enhances control and reduces color and exposure issues in image generation, proving effective in diverse applications ranging from latent space sampling to solving physics problems like magnet phase transitions.
To estimate the direction of arrival (DOA) of multiple speakers with methods that use prototype transfer functions, frequency-dependent spatial spectra (SPS) are usually constructed. To make the DOA estimation robust, SPS from different frequencies can be combined. According to how the SPS are combined, frequency fusion mechanisms are categorized into narrowband, broadband, or speaker-grouped, where the latter mechanism requires a speaker-wise grouping of frequencies. For a binaural hearing aid setup, in this paper we propose an interaural time difference (ITD)-based speaker-grouped frequency fusion mechanism. By exploiting the DOA dependence of ITDs, frequencies can be grouped according to a common ITD and be used for DOA estimation of the respective speaker. We apply the proposed ITD-based speaker-grouped frequency fusion mechanism for different DOA estimation methods, namely the multiple signal classification, steered response power and a recently published method based on relative transfer function (RTF) vectors. In our experiments, we compare DOA estimation with different fusion mechanisms. For all considered DOA estimation methods, the proposed ITD-based speaker-grouped frequency fusion mechanism results in a higher DOA estimation accuracy compared with the narrowband and broadband fusion mechanisms.
Diffusion models have shown promising results in speech enhancement, using a task-adapted diffusion process for the conditional generation of clean speech given a noisy mixture. However, at test time, the neural network used for score estimation is called multiple times to solve the iterative reverse process. This results in a slow inference process and causes discretization errors that accumulate over the sampling trajectory. In this paper, we address these limitations through a two-stage training approach. In the first stage, we train the diffusion model the usual way using the generative denoising score matching loss. In the second stage, we compute the enhanced signal by solving the reverse process and compare the resulting estimate to the clean speech target using a predictive loss. We show that using this second training stage enables achieving the same performance as the baseline model using only 5 function evaluations instead of 60 function evaluations. While the performance of usual generative diffusion algorithms drops dramatically when lowering the number of function evaluations (NFEs) to obtain single-step diffusion, we show that our proposed method keeps a steady performance and therefore largely outperforms the diffusion baseline in this setting and also generalizes better than its predictive counterpart.
We examine the relationship between the mutual information between the output model and the empirical sample and the generalization of the algorithm in the context of stochastic convex optimization. Despite increasing interest in information-theoretic generalization bounds, it is uncertain if these bounds can provide insight into the exceptional performance of various learning algorithms. Our study of stochastic convex optimization reveals that, for true risk minimization, dimension-dependent mutual information is necessary. This indicates that existing information-theoretic generalization bounds fall short in capturing the generalization capabilities of algorithms like SGD and regularized ERM, which have dimension-independent sample complexity.
Open set recognition (OSR) requires the model to classify samples that belong to closed sets while rejecting unknown samples during test. Currently, generative models often perform better than discriminative models in OSR, but recent studies show that generative models may be computationally infeasible or unstable on complex tasks. In this paper, we provide insights into OSR and find that learning supplementary representations can theoretically reduce the open space risk. Based on the analysis, we propose a new model, namely Multi-Expert Diverse Attention Fusion (MEDAF), that learns diverse representations in a discriminative way. MEDAF consists of multiple experts that are learned with an attention diversity regularization term to ensure the attention maps are mutually different. The logits learned by each expert are adaptively fused and used to identify the unknowns through the score function. We show that the differences in attention maps can lead to diverse representations so that the fused representations can well handle the open space. Extensive experiments are conducted on standard and OSR large-scale benchmarks. Results show that the proposed discriminative method can outperform existing generative models by up to 9.5% on AUROC and achieve new state-of-the-art performance with little computational cost. Our method can also seamlessly integrate existing classification models. Code is available at //github.com/Vanixxz/MEDAF.
Recent code large language models (LLMs) have shown promising performance in generating standalone functions but face limitations in repository-level code generation due to their lack of awareness of repository-level dependencies (e.g., user-defined attributes), resulting in dependency errors such as undefined-variable and no-member errors. In this work, we introduce ToolGen, an approach that integrates autocompletion tools into the code LLM generation process to address these dependencies. ToolGen comprises two main phases: Data Augmentation and Model Fine-tuning (Offline), and Tool-integrated Code Generation (Online). During the offline phase, ToolGen augments functions within a given code corpus with a special mark token, indicating positions to trigger autocompletion tools. These augmented functions, along with their corresponding docstrings, are then used to fine-tune a selected code LLM. In the online phase, ToolGen iteratively generates functions by predicting tokens step-by-step using the fine-tuned LLM. Whenever a mark token is encountered, ToolGen invokes the autocompletion tool to suggest code completions and selects the most appropriate one. We conduct comprehensive experiments to evaluate ToolGen's effectiveness in repository-level code generation. To facilitate this evaluation, we create a benchmark comprising 680 real-world code repositories and introduce two new repository-level metrics: Dependency Coverage and Success Rate. The results demonstrate that ToolGen significantly improves dependency coverage by 15.2% to 45.8% and success rates by 10.9% to 42.2% across three distinct code LLMs, while maintaining competitive performance in widely-recognized similarity metrics. Furthermore, our generalizability evaluation confirms ToolGen's consistent performance when applied to diverse code LLMs, including various model architectures and scales.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.