Use energy-based model for bridge-type innovation. The loss function is explained by the game theory, the logic is clear and the formula is simple and clear. Thus avoid the use of maximum likelihood estimation to explain the loss function and eliminate the need for Monte Carlo methods to solve the normalized denominator. Assuming that the bridge-type population follows a Boltzmann distribution, a neural network is constructed to represent the energy function. Use Langevin dynamics technology to generate a new sample with low energy value, thus a generative model of bridge-type based on energy is established. Train energy function on symmetric structured image dataset of three span beam bridge, arch bridge, cable-stayed bridge, and suspension bridge to accurately calculate the energy values of real and fake samples. Sampling from latent space, using gradient descent algorithm, the energy function transforms the sampling points into low energy score samples, thereby generating new bridge types different from the dataset. Due to unstable and slow training in this attempt, the possibility of generating new bridge types is rare and the image definition of generated images is low.
A preconditioning strategy is proposed for the iterative solve of large numbers of linear systems with variable matrix and right-hand side which arise during the computation of solution statistics of stochastic elliptic partial differential equations with random variable coefficients sampled by Monte Carlo. Building on the assumption that a truncated Karhunen-Lo\`{e}ve expansion of a known transform of the random variable coefficient is known, we introduce a compact representation of the random coefficient in the form of a Voronoi quantizer. The number of Voronoi cells, each of which is represented by a centroidal variable coefficient, is set to the prescribed number $P$ of preconditioners. Upon sampling the random variable coefficient, the linear system assembled with a given realization of the coefficient is solved with the preconditioner whose centroidal variable coefficient is the closest to the realization. We consider different ways to define and obtain the centroidal variable coefficients, and we investigate the properties of the induced preconditioning strategies in terms of average number of solver iterations for sequential simulations, and of load balancing for parallel simulations. Another approach, which is based on deterministic grids on the system of stochastic coordinates of the truncated representation of the random variable coefficient, is proposed with a stochastic dimension which increases with the number $P$ of preconditioners. This approach allows to bypass the need for preliminary computations in order to determine the optimal stochastic dimension of the truncated approximation of the random variable coefficient for a given number of preconditioners.
The modeling of cracks is an important topic - both in engineering as well as in mathematics. Since crack propagation is characterized by a free boundary value problem (the geometry of the crack is not known beforehand, but part of the solution), approximations of the underlying sharp-interface problem based on phase-field models are often considered. Focusing on a rate-independent setting, these models are defined by a unidirectional gradient-flow of an energy functional. Since this energy functional is non-convex, the evolution of the variables such as the displacement field and the phase-field variable might be discontinuous in time leading to so-called brutal crack growth. For this reason, solution concepts have to be carefully chosen in order to predict discontinuities that are physically reasonable. One such concept is that of Balanced Viscosity solutions (BV solutions). This concept predicts physically sound energy trajectories that do not jump across energy barriers. The paper deals with a time-adaptive finite element phase-field model for rate-independent fracture which converges to BV solutions. The model is motivated by constraining the pseudo-velocity of the crack tip. The resulting constrained minimization problem is solved by the augmented Lagrangian method. Numerical examples highlight the predictive capabilities of the model and furthermore show the efficiency and the robustness of the final algorithm.
Bayesian inference for complex models with an intractable likelihood can be tackled using algorithms performing many calls to computer simulators. These approaches are collectively known as "simulation-based inference" (SBI). Recent SBI methods have made use of neural networks (NN) to provide approximate, yet expressive constructs for the unavailable likelihood function and the posterior distribution. However, they do not generally achieve an optimal trade-off between accuracy and computational demand. In this work, we propose an alternative that provides both approximations to the likelihood and the posterior distribution, using structured mixtures of probability distributions. Our approach produces accurate posterior inference when compared to state-of-the-art NN-based SBI methods, while exhibiting a much smaller computational footprint. We illustrate our results on several benchmark models from the SBI literature.
In this paper, we harness a result in point process theory, specifically the expectation of the weighted $K$-function, where the weighting is done by the true first-order intensity function. This theoretical result can be employed as an estimation method to derive parameter estimates for a particular model assumed for the data. The underlying motivation is to avoid the difficulties associated with dealing with complex likelihoods in point process models and their maximization. The exploited result makes our method theoretically applicable to any model specification. In this paper, we restrict our study to Poisson models, whose likelihood represents the base for many more complex point process models. In this context, our proposed method can estimate the vector of local parameters that correspond to the points within the analyzed point pattern without introducing any additional complexity compared to the global estimation. We illustrate the method through simulation studies for both purely spatial and spatio-temporal point processes and show complex scenarios based on the Poisson model through the analysis of two real datasets concerning environmental problems.
The Bell regression model (BRM) is a statistical model that is often used in the analysis of count data that exhibits overdispersion. In this study, we propose a Bayesian analysis of the BRM and offer a new perspective on its application. Specifically, we introduce a G-prior distribution for Bayesian inference in BRM, in addition to a flat-normal prior distribution. To compare the performance of the proposed prior distributions, we conduct a simulation study and demonstrate that the G-prior distribution provides superior estimation results for the BRM. Furthermore, we apply the methodology to real data and compare the BRM to the Poisson regression model using various model selection criteria. Our results provide valuable insights into the use of Bayesian methods for estimation and inference of the BRM and highlight the importance of considering the choice of prior distribution in the analysis of count data.
High-performing out-of-distribution (OOD) detection, both anomaly and novel class, is an important prerequisite for the practical use of classification models. In this paper, we focus on the species recognition task in images concerned with large databases, a large number of fine-grained hierarchical classes, severe class imbalance, and varying image quality. We propose a framework for combining individual OOD measures into one combined OOD (COOD) measure using a supervised model. The individual measures are several existing state-of-the-art measures and several novel OOD measures developed with novel class detection and hierarchical class structure in mind. COOD was extensively evaluated on three large-scale (500k+ images) biodiversity datasets in the context of anomaly and novel class detection. We show that COOD outperforms individual, including state-of-the-art, OOD measures by a large margin in terms of TPR@1% FPR in the majority of experiments, e.g., improving detecting ImageNet images (OOD) from 54.3% to 85.4% for the iNaturalist 2018 dataset. SHAP (feature contribution) analysis shows that different individual OOD measures are essential for various tasks, indicating that multiple OOD measures and combinations are needed to generalize. Additionally, we show that explicitly considering ID images that are incorrectly classified for the original (species) recognition task is important for constructing high-performing OOD detection methods and for practical applicability. The framework can easily be extended or adapted to other tasks and media modalities.
Maximum entropy (Maxent) models are a class of statistical models that use the maximum entropy principle to estimate probability distributions from data. Due to the size of modern data sets, Maxent models need efficient optimization algorithms to scale well for big data applications. State-of-the-art algorithms for Maxent models, however, were not originally designed to handle big data sets; these algorithms either rely on technical devices that may yield unreliable numerical results, scale poorly, or require smoothness assumptions that many practical Maxent models lack. In this paper, we present novel optimization algorithms that overcome the shortcomings of state-of-the-art algorithms for training large-scale, non-smooth Maxent models. Our proposed first-order algorithms leverage the Kullback-Leibler divergence to train large-scale and non-smooth Maxent models efficiently. For Maxent models with discrete probability distribution of $n$ elements built from samples, each containing $m$ features, the stepsize parameters estimation and iterations in our algorithms scale on the order of $O(mn)$ operations and can be trivially parallelized. Moreover, the strong $\ell_{1}$ convexity of the Kullback--Leibler divergence allows for larger stepsize parameters, thereby speeding up the convergence rate of our algorithms. To illustrate the efficiency of our novel algorithms, we consider the problem of estimating probabilities of fire occurrences as a function of ecological features in the Western US MTBS-Interagency wildfire data set. Our numerical results show that our algorithms outperform the state of the arts by one order of magnitude and yield results that agree with physical models of wildfire occurrence and previous statistical analyses of wildfire drivers.
First-order methods are often analyzed via their continuous-time models, where their worst-case convergence properties are usually approached via Lyapunov functions. In this work, we provide a systematic and principled approach to find and verify Lyapunov functions for classes of ordinary and stochastic differential equations. More precisely, we extend the performance estimation framework, originally proposed by Drori and Teboulle [10], to continuous-time models. We retrieve convergence results comparable to those of discrete methods using fewer assumptions and convexity inequalities, and provide new results for stochastic accelerated gradient flows.
In decision-making, maxitive functions are used for worst-case and best-case evaluations. Maxitivity gives rise to a rich structure that is well-studied in the context of the pointwise order. In this article, we investigate maxitivity with respect to general preorders and provide a representation theorem for such functionals. The results are illustrated for different stochastic orders in the literature, including the usual stochastic order, the increasing convex/concave order, and the dispersive order.
The worst-case complexity of group-theoretic algorithms has been studied for a long time. Generic-case complexity, or complexity on random inputs, was introduced and studied relatively recently. In this paper, we address the average-case time complexity of the word problem in several classes of groups and show that it is often the case that the average-case complexity is linear with respect to the length of an input word. The classes of groups that we consider include groups of matrices over rationals (in particular, polycyclic groups), some classes of solvable groups, as well as free products. Along the way, we improve several bounds for the worst-case complexity of the word problem in groups of matrices, in particular in nilpotent groups. For free products, we also address the average-case complexity of the subgroup membership problem and show that it is often linear, too. Finally, we discuss complexity of the identity problem that has not been considered before.