亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we give bounds on the dichromatic number $\vec{\chi}(\Sigma)$ of a surface $\Sigma$, which is the maximum dichromatic number of an oriented graph embeddable on $\Sigma$. We determine the asymptotic behaviour of $\vec{\chi}(\Sigma)$ by showing that there exist constants $a_1$ and $a_2$ such that, $a_1\frac{\sqrt{-c}}{\log(-c)} \leq \vec{\chi}(\Sigma) \leq a_2 \frac{\sqrt{-c}}{\log(-c)} $ for every surface $\Sigma$ with Euler characteristic $c\leq -2$. We then give more explicit bounds for some surfaces with high Euler characteristic. In particular, we show that the dichromatic numbers of the projective plane $\mathbb{N}_1$, the Klein bottle $\mathbb{N}_2$, the torus $\mathbb{S}_1$, and Dyck's surface $\mathbb{N}_3$ are all equal to $3$, and that the dichromatic numbers of the $5$-torus $\mathbb{S}_5$ and the $10$-cross surface $\mathbb{N}_{10}$ are equal to $4$. We also consider the complexity of deciding whether a given digraph or oriented graph embeddable on a fixed surface is $k$-dicolourable. In particular, we show that for any fixed surface, deciding whether a digraph embeddable on this surface is $2$-dicolourable is NP-complete, and that deciding whether a planar oriented graph is $2$-dicolourable is NP-complete unless all planar oriented graphs are $2$-dicolourable (which was conjectured by Neumann-Lara).

相關內容

 Surface 是微軟公司( )旗下一系列使用 Windows 10(早期為 Windows 8.X)操作系統的電腦產品,目前有 Surface、Surface Pro 和 Surface Book 三個系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由時任微軟 CEO 史蒂夫·鮑爾默發布于在洛杉磯舉行的記者會,2012 年 10 月 26 日上市銷售。

We study the problem of {\sl certification}: given queries to a function $f : \{0,1\}^n \to \{0,1\}$ with certificate complexity $\le k$ and an input $x^\star$, output a size-$k$ certificate for $f$'s value on $x^\star$. This abstractly models a central problem in explainable machine learning, where we think of $f$ as a blackbox model that we seek to explain the predictions of. For monotone functions, a classic local search algorithm of Angluin accomplishes this task with $n$ queries, which we show is optimal for local search algorithms. Our main result is a new algorithm for certifying monotone functions with $O(k^8 \log n)$ queries, which comes close to matching the information-theoretic lower bound of $\Omega(k \log n)$. The design and analysis of our algorithm are based on a new connection to threshold phenomena in monotone functions. We further prove exponential-in-$k$ lower bounds when $f$ is non-monotone, and when $f$ is monotone but the algorithm is only given random examples of $f$. These lower bounds show that assumptions on the structure of $f$ and query access to it are both necessary for the polynomial dependence on $k$ that we achieve.

For two graphs $G^<$ and $H^<$ with linearly ordered vertex sets, the \emph{ordered Ramsey number} $r_<(G^<,H^<)$ is the minimum $N$ such that every red-blue coloring of the edges of the ordered complete graph on $N$ vertices contains a red copy of $G^<$ or a blue copy of $H^<$. For a positive integer $n$, a \emph{nested matching} $NM^<_n$ is the ordered graph on $2n$ vertices with edges $\{i,2n-i+1\}$ for every $i=1,\dots,n$. We improve bounds on the ordered Ramsey numbers $r_<(NM^<_n,K^<_3)$ obtained by Rohatgi, we disprove his conjecture by showing $4n+1 \leq r_<(NM^<_n,K^<_3) \leq (3+\sqrt{5})n$ for every $n \geq 6$, and we determine the numbers $r_<(NM^<_n,K^<_3)$ exactly for $n=4,5$. As a corollary, this gives stronger lower bounds on the maximum chromatic number of $k$-queue graphs for every $k \geq 3$. We also prove $r_<(NM^<_m,K^<_n)=\Theta(mn)$ for arbitrary $m$ and $n$. We expand the classical notion of Ramsey goodness to the ordered case and we attempt to characterize all connected ordered graphs that are $n$-good for every $n\in\mathbb{N}$. In particular, we discover a new class of ordered trees that are $n$-good for every $n \in \mathbb{N}$, extending all the previously known examples.

For an integer $k \geq 1$ and a graph $G$, let $\mathcal{K}_k(G)$ be the graph that has vertex set all proper $k$-colorings of $G$, and an edge between two vertices $\alpha$ and~$\beta$ whenever the coloring~$\beta$ can be obtained from $\alpha$ by a single Kempe change. A theorem of Meyniel from 1978 states that $\mathcal{K}_5(G)$ is connected with diameter $O(5^{|V(G)|})$ for every planar graph $G$. We significantly strengthen this result, by showing that there is a positive constant $c$ such that $\mathcal{K}_5(G)$ has diameter $O(|V(G)|^c)$ for every planar graph $G$.

We study the realizability problem for Safety LTL, the syntactic fragment of Linear Temporal Logic capturing safe formulas. We show that the problem is EXP-complete, disproving the existing conjecture of 2EXP-completeness. We achieve this by comparing the complexity of Safety LTL with seemingly weaker subfragments. In particular, we show that every formula of Safety LTL can be reduced to an equirealizable formula of the form $\alpha \land \Box \psi$, where $\alpha$ is a present formula over system variables and $\psi$ contains Next as the only temporal operator. The realizability problem for this new fragment, which we call $\mathsf{GX}_{\mathsf{0}}$, is also EXP-complete.

In this paper, we prove a local limit theorem for the chi-square distribution with $r > 0$ degrees of freedom and noncentrality parameter $\lambda \geq 0$. We use it to develop refined normal approximations for the survival function. Our maximal errors go down to an order of $r^{-2}$, which is significantly smaller than the maximal error bounds of order $r^{-1/2}$ recently found by Horgan & Murphy (2013) and Seri (2015). Our results allow us to drastically reduce the number of observations required to obtain negligible errors in the energy detection problem, from $250$, as recommended in the seminal work of Urkowitz (1967), to only $8$ here with our new approximations. We also obtain an upper bound on several probability metrics between the central and noncentral chi-square distributions and the standard normal distribution, and we obtain an approximation for the median that improves the lower bound previously obtained by Robert (1990).

We improve the bound on K\"uhnel's problem to determine the smallest $n$ such that the $k$-skeleton of an $n$-simplex $\Delta_n^{(k)}$ does not embed into a compact PL $2k$-manifold $M$ by showing that if $\Delta_n^{(k)}$ embeds into $M$, then $n\leq (2k+1)+(k+1)\beta_k(M;\mathbb Z_2)$. As a consequence we obtain improved Radon and Helly type results for set systems in such manifolds. Our main tool is a new description of an obstruction for embeddability of a $k$-complex $K$ into a compact PL $2k$-manifold $M$ via the intersection form on $M$. In our approach we need that for every map $f\colon K\to M$ the restriction to the $(k-1)$-skeleton of $K$ is nullhomotopic. In particular, this condition is satisfied in interesting cases if $K$ is $(k-1)$-connected, for example a $k$-skeleton of $n$-simplex, or if $M$ is $(k-1)$-connected. In addition, if $M$ is $(k-1)$-connected and $k\geq 3$, the obstruction is complete, meaning that a $k$-complex $K$ embeds into $M$ if and only if the obstruction vanishes. For trivial intersection forms, our obstruction coincides with the standard van Kampen obstruction. However, if the form is non-trivial, the obstruction is not linear but rather 'quadratic' in a sense that it vanishes if and only if certain system of quadratic diophantine equations is solvable. This may potentially be useful in attacking algorithmic decidability of embeddability of $k$-complexes into PL $2k$-manifolds.

Schelling's model considers $k$ types of agents each of whom needs to select a vertex on an undirected graph, where every agent prefers to neighbor agents of the same type. We are motivated by a recent line of work that studies solutions that are optimal with respect to notions related to the welfare of the agents. We explore the parameterized complexity of computing such solutions. We focus on the well-studied notions of social welfare (WO) and Pareto optimality (PO), alongside the recently proposed notions of group-welfare optimality (GWO) and utility-vector optimality (UVO), both of which lie between WO and PO. Firstly, we focus on the fundamental case where $k=2$ and there are $r$ red agents and $b$ blue agents. We show that all solution-notions we consider are $\textsf{NP}$-hard to compute even when $b=1$ and that they are $\textsf{W}[1]$-hard when parameterized by $r$ and $b$. In addition, we show that WO and GWO are $\textsf{NP}$-hard even on cubic graphs. We complement these negative results by an $\textsf{FPT}$ algorithm parameterized by $r, b$ and the maximum degree of the graph. For the general case with $k$ types of agents, we prove that for any of the notions we consider the problem is $\textsf{W}[1]$-hard when parameterized by $k$ for a large family of graphs that includes trees. We accompany these negative results with an $\textsf{XP}$ algorithm parameterized by $k$ and the treewidth of the graph.

A proof labelling scheme for a graph class $\mathcal{C}$ is an assignment of certificates to the vertices of any graph in the class $\mathcal{C}$, such that upon reading its certificate and the certificates of its neighbors, every vertex from a graph $G\in \mathcal{C}$ accepts the instance, while if $G\not\in \mathcal{C}$, for every possible assignment of certificates, at least one vertex rejects the instance. It was proved recently that for any fixed surface $\Sigma$, the class of graphs embeddable in $\Sigma$ has a proof labelling scheme in which each vertex of an $n$-vertex graph receives a certificate of at most $O(\log n)$ bits. The proof is quite long and intricate and heavily relies on an earlier result for planar graphs. Here we give a very short proof for any surface. The main idea is to encode a rotation system locally, together with a spanning tree supporting the local computation of the genus via Euler's formula.

We develop a framework for incorporating edge-dependent vertex weights (EDVWs) into the hypergraph minimum s-t cut problem. These weights are able to reflect different importance of vertices within a hyperedge, thus leading to better characterized cut properties. More precisely, we introduce a new class of hyperedge splitting functions that we call EDVWs-based, where the penalty of splitting a hyperedge depends only on the sum of EDVWs associated with the vertices on each side of the split. Moreover, we provide a way to construct submodular EDVWs-based splitting functions and prove that a hypergraph equipped with such splitting functions can be reduced to a graph sharing the same cut properties. In this case, the hypergraph minimum s-t cut problem can be solved using well-developed solutions to the graph minimum s-t cut problem. In addition, we show that an existing sparsification technique can be easily extended to our case and makes the reduced graph smaller and sparser, thus further accelerating the algorithms applied to the reduced graph. Numerical experiments using real-world data demonstrate the effectiveness of our proposed EDVWs-based splitting functions in comparison with the all-or-nothing splitting function and cardinality-based splitting functions commonly adopted in existing work.

A strict bramble of a graph $G$ is a collection of pairwise-intersecting connected subgraphs of $G.$ The order of a strict bramble ${\cal B}$ is the minimum size of a set of vertices intersecting all sets of ${\cal B}.$ The strict bramble number of $G,$ denoted by ${\sf sbn}(G),$ is the maximum order of a strict bramble in $G.$ The strict bramble number of $G$ can be seen as a way to extend the notion of acyclicity, departing from the fact that (non-empty) acyclic graphs are exactly the graphs where every strict bramble has order one. We initiate the study of this graph parameter by providing three alternative definitions, each revealing different structural characteristics. The first is a min-max theorem asserting that ${\sf sbn}(G)$ is equal to the minimum $k$ for which $G$ is a minor of the lexicographic product of a tree and a clique on $k$ vertices (also known as the lexicographic tree product number). The second characterization is in terms of a new variant of a tree decomposition called lenient tree decomposition. We prove that ${\sf sbn}(G)$ is equal to the minimum $k$ for which there exists a lenient tree decomposition of $G$ of width at most $k.$ The third characterization is in terms of extremal graphs. For this, we define, for each $k,$ the concept of a $k$-domino-tree and we prove that every edge-maximal graph of strict bramble number at most $k$ is a $k$-domino-tree. We also identify three graphs that constitute the minor-obstruction set of the class of graphs with strict bramble number at most two. We complete our results by proving that, given some $G$ and $k,$ deciding whether ${\sf sbn}(G) \leq k$ is an ${\sf NP}$-complete problem.

北京阿比特科技有限公司