亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This pioneering study explores students' perceptions of AI-giarism, an emergent form of academic dishonesty involving AI and plagiarism, within the higher education context. A survey, undertaken by 393 undergraduate and postgraduate students from a variety of disciplines, investigated their perceptions of diverse AI-giarism scenarios. The findings portray a complex landscape of understanding, with clear disapproval for direct AI content generation, yet more ambivalent attitudes towards subtler uses of AI. The study introduces a novel instrument, as an initial conceptualization of AI-giarism, offering a significant tool for educators and policy-makers. This scale facilitates understanding and discussions around AI-related academic misconduct, aiding in pedagogical design and assessment in an era of AI integration. Moreover, it challenges traditional definitions of academic misconduct, emphasizing the need to adapt in response to evolving AI technology. Despite limitations, such as the rapidly changing nature of AI and the use of convenience sampling, the study provides pivotal insights for academia, policy-making, and the broader integration of AI technology in education.

相關內容

人工智能雜志AI(Artificial Intelligence)是目前公認的發表該領域最新研究成果的主要國際論壇。該期刊歡迎有關AI廣泛方面的論文,這些論文構成了整個領域的進步,也歡迎介紹人工智能應用的論文,但重點應該放在新的和新穎的人工智能方法如何提高應用領域的性能,而不是介紹傳統人工智能方法的另一個應用。關于應用的論文應該描述一個原則性的解決方案,強調其新穎性,并對正在開發的人工智能技術進行深入的評估。 官網地址:

As a representative cyber-physical system (CPS), robotic manipulator has been widely adopted in various academic research and industrial processes, indicating its potential to act as a universal interface between the cyber and the physical worlds. Recent studies in robotics manipulation have started employing artificial intelligence (AI) approaches as controllers to achieve better adaptability and performance. However, the inherent challenge of explaining AI components introduces uncertainty and unreliability to these AI-enabled robotics systems, necessitating a reliable development platform for system design and performance assessment. As a foundational step towards building reliable AI-enabled robotics systems, we propose a public industrial benchmark for robotics manipulation in this paper. It leverages NVIDIA Omniverse Isaac Sim as the simulation platform, encompassing eight representative manipulation tasks and multiple AI software controllers. An extensive evaluation is conducted to analyze the performance of AI controllers in solving robotics manipulation tasks, enabling a thorough understanding of their effectiveness. To further demonstrate the applicability of our benchmark, we develop a falsification framework that is compatible with physical simulators and OpenAI Gym environments. This framework bridges the gap between traditional testing methods and modern physics engine-based simulations. The effectiveness of different optimization methods in falsifying AI-enabled robotics manipulation with physical simulators is examined via a falsification test. Our work not only establishes a foundation for the design and development of AI-enabled robotics systems but also provides practical experience and guidance to practitioners in this field, promoting further research in this critical academic and industrial domain.

We discuss some aspects of our work on the mechanization of syntax and semantics in the UniMath library, based on the proof assistant Coq. We focus on experiences where Coq (as a type-theoretic proof assistant with decidable typechecking) made us use more theory or helped us to see theory more clearly.

Large language models of artificial intelligence (AI), such as ChatGPT, find remarkable but controversial applicability in science and research. This paper reviews epistemological challenges, ethical and integrity risks in science conduct in the advent of generative AI. This is with the aim to lay new timely foundations for a high-quality research ethics review. The role of AI language models as a research instrument and subject is scrutinized along with ethical implications for scientists, participants and reviewers. New emerging practices for research ethics review are discussed, concluding with ten recommendations that shape a response for a more responsible research conduct in the era of AI.

Large-scale language models such as DNABert and LOGO aim to learn optimal gene representations and are trained on the entire Human Reference Genome. However, standard tokenization schemes involve a simple sliding window of tokens like k-mers that do not leverage any gene-based semantics and thus may lead to (trivial) masking of easily predictable sequences and subsequently inefficient Masked Language Modeling (MLM) training. Therefore, we propose a novel masking algorithm, GeneMask, for MLM training of gene sequences, where we randomly identify positions in a gene sequence as mask centers and locally select the span around the mask center with the highest Normalized Pointwise Mutual Information (NPMI) to mask. We observe that in the absence of human-understandable semantics in the genomics domain (in contrast, semantic units like words and phrases are inherently available in NLP), GeneMask-based models substantially outperform the SOTA models (DNABert and LOGO) over four benchmark gene sequence classification datasets in five few-shot settings (10 to 1000-shot). More significantly, the GeneMask-based DNABert model is trained for less than one-tenth of the number of epochs of the original SOTA model. We also observe a strong correlation between top-ranked PMI tokens and conserved DNA sequence motifs, which may indicate the incorporation of latent genomic information. The codes (including trained models) and datasets are made publicly available at //github.com/roysoumya/GeneMask.

We introduce a novel method to derandomize the learning with errors (LWE) problem by generating deterministic yet sufficiently independent LWE instances that are constructed by using linear regression models, which are generated via (wireless) communication errors. We also introduce star-specific key-homomorphic (SSKH) pseudorandom functions (PRFs), which are defined by the respective sets of parties that construct them. We use our derandomized variant of LWE to construct a SSKH PRF family. The sets of parties constructing SSKH PRFs are arranged as star graphs with possibly shared vertices, i.e., the pairs of sets may have non-empty intersections. We reduce the security of our SSKH PRF family to the hardness of LWE. To establish the maximum number of SSKH PRFs that can be constructed -- by a set of parties -- in the presence of passive/active and external/internal adversaries, we prove several bounds on the size of maximally cover-free at most $t$-intersecting $k$-uniform family of sets $\mathcal{H}$, where the three properties are defined as: (i) $k$-uniform: $\forall A \in \mathcal{H}: |A| = k$, (ii) at most $t$-intersecting: $\forall A, B \in \mathcal{H}, B \neq A: |A \cap B| \leq t$, (iii) maximally cover-free: $\forall A \in \mathcal{H}: A \not\subseteq \bigcup\limits_{\substack{B \in \mathcal{H} \\ B \neq A}} B$. For the same purpose, we define and compute the mutual information between different linear regression hypotheses that are generated from overlapping training datasets.

Multi-agent systems require effective coordination between groups and individuals to achieve common goals. However, current multi-agent reinforcement learning (MARL) methods primarily focus on improving individual policies and do not adequately address group-level policies, which leads to weak cooperation. To address this issue, we propose a novel Consensus-oriented Strategy (CoS) that emphasizes group and individual policies simultaneously. Specifically, CoS comprises two main components: (a) the vector quantized group consensus module, which extracts discrete latent embeddings that represent the stable and discriminative group consensus, and (b) the group consensus-oriented strategy, which integrates the group policy using a hypernet and the individual policies using the group consensus, thereby promoting coordination at both the group and individual levels. Through empirical experiments on cooperative navigation tasks with both discrete and continuous spaces, as well as Google research football, we demonstrate that CoS outperforms state-of-the-art MARL algorithms and achieves better collaboration, thus providing a promising solution for achieving effective coordination in multi-agent systems.

Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering and recommendation systems, etc. According to the graph types, the existing KGR models can be roughly divided into three categories, \textit{i.e.,} static models, temporal models, and multi-modal models. The early works in this domain mainly focus on static KGR and tend to directly apply general knowledge graph embedding models to the reasoning task. However, these models are not suitable for more complex but practical tasks, such as inductive static KGR, temporal KGR, and multi-modal KGR. To this end, multiple works have been developed recently, but no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the preliminaries, summaries of KGR models, and typical datasets are introduced and discussed consequently. Moreover, we discuss the challenges and potential opportunities. The corresponding open-source repository is shared on GitHub: //github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

We study joint learning of Convolutional Neural Network (CNN) and Transformer for vision-language pre-training (VLPT) which aims to learn cross-modal alignments from millions of image-text pairs. State-of-the-art approaches extract salient image regions and align regions with words step-by-step. As region-based visual features usually represent parts of an image, it is challenging for existing vision-language models to fully understand the semantics from paired natural languages. In this paper, we propose SOHO to "See Out of tHe bOx" that takes a whole image as input, and learns vision-language representation in an end-to-end manner. SOHO does not require bounding box annotations which enables inference 10 times faster than region-based approaches. In particular, SOHO learns to extract comprehensive yet compact image features through a visual dictionary (VD) that facilitates cross-modal understanding. VD is designed to represent consistent visual abstractions of similar semantics. It is updated on-the-fly and utilized in our proposed pre-training task Masked Visual Modeling (MVM). We conduct experiments on four well-established vision-language tasks by following standard VLPT settings. In particular, SOHO achieves absolute gains of 2.0% R@1 score on MSCOCO text retrieval 5k test split, 1.5% accuracy on NLVR$^2$ test-P split, 6.7% accuracy on SNLI-VE test split, respectively.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司