Multimodal representation learning poses significant challenges in capturing informative and distinct features from multiple modalities. Existing methods often struggle to exploit the unique characteristics of each modality due to unified multimodal annotations. In this study, we propose Self-MI in the self-supervised learning fashion, which also leverage Contrastive Predictive Coding (CPC) as an auxiliary technique to maximize the Mutual Information (MI) between unimodal input pairs and the multimodal fusion result with unimodal inputs. Moreover, we design a label generation module, $ULG_{MI}$ for short, that enables us to create meaningful and informative labels for each modality in a self-supervised manner. By maximizing the Mutual Information, we encourage better alignment between the multimodal fusion and the individual modalities, facilitating improved multimodal fusion. Extensive experiments on three benchmark datasets including CMU-MOSI, CMU-MOSEI, and SIMS, demonstrate the effectiveness of Self-MI in enhancing the multimodal fusion task.
A typical assumption in state-of-the-art self-localization models is that an annotated training dataset is available for the target workspace. However, this is not necessarily true when a robot travels around the general open world. This work introduces a novel training scheme for open-world distributed robot systems. In our scheme, a robot (``student") can ask the other robots it meets at unfamiliar places (``teachers") for guidance. Specifically, a pseudo-training dataset is reconstructed from the teacher model and then used for continual learning of the student model under domain, class, and vocabulary incremental setup. Unlike typical knowledge transfer schemes, our scheme introduces only minimal assumptions on the teacher model, so that it can handle various types of open-set teachers, including those uncooperative, untrainable (e.g., image retrieval engines), or black-box teachers (i.e., data privacy). In this paper, we investigate a ranking function as an instance of such generic models, using a challenging data-free recursive distillation scenario, where a student once trained can recursively join the next-generation open teacher set.
The examination of blood samples at a microscopic level plays a fundamental role in clinical diagnostics, influencing a wide range of medical conditions. For instance, an in-depth study of White Blood Cells (WBCs), a crucial component of our blood, is essential for diagnosing blood-related diseases such as leukemia and anemia. While multiple datasets containing WBC images have been proposed, they mostly focus on cell categorization, often lacking the necessary morphological details to explain such categorizations, despite the importance of explainable artificial intelligence (XAI) in medical domains. This paper seeks to address this limitation by introducing comprehensive annotations for WBC images. Through collaboration with pathologists, a thorough literature review, and manual inspection of microscopic images, we have identified 11 morphological attributes associated with the cell and its components (nucleus, cytoplasm, and granules). We then annotated ten thousand WBC images with these attributes. Moreover, we conduct experiments to predict these attributes from images, providing insights beyond basic WBC classification. As the first public dataset to offer such extensive annotations, we also illustrate specific applications that can benefit from our attribute annotations. Overall, our dataset paves the way for interpreting WBC recognition models, further advancing XAI in the fields of pathology and hematology.
Fine-tuning pre-trained foundation models has gained significant popularity in various research fields. Existing methods for fine-tuning can be roughly divided into two categories, namely Parameter-Efficient Fine-Tuning and High-Performance Fine-Tuning. The former aims at improving efficiency, while the latter focuses on enhancing performance. Beyond these methods, we demonstrate that Partial Fine-Tuning can be an innovative and promising direction capable of concurrently enhancing both efficiency and accuracy. We first validate eight manually-defined partial fine-tuning strategies across kinds of datasets and vision transformer architectures, and find that some partial fine-tuning strategies (e.g., ffn only or attention only) can achieve better performance with fewer tuned parameters than full fine-tuning, and selecting appropriate layers is critical to partial fine-tuning. Thus, we propose a novel fine-tuned angle metric to guide the selection of appropriate layers for partial fine-tuning, making it flexible to be adapted to various scenarios for more practicable partial fine-tuning. Additionally, we show that partial fine-tuning can serve as a new dimension for Model Soups, improving both the model performance and generalization with fewer tuned parameters. Comprehensive experiments on a wide range of datasets and models validate the great potential of partial fine-tuning.
The challenges inherent to long-horizon tasks in robotics persist due to the typical inefficient exploration and sparse rewards in traditional reinforcement learning approaches. To alleviate these challenges, we introduce a novel algorithm, Variational Autoencoder-based Subgoal Inference (VAESI), to accomplish long-horizon tasks through a divide-and-conquer manner. VAESI consists of three components: a Variational Autoencoder (VAE)-based Subgoal Generator, a Hindsight Sampler, and a Value Selector. The VAE-based Subgoal Generator draws inspiration from the human capacity to infer subgoals and reason about the final goal in the context of these subgoals. It is composed of an explicit encoder model, engineered to generate subgoals, and an implicit decoder model, designed to enhance the quality of the generated subgoals by predicting the final goal. Additionally, the Hindsight Sampler selects valid subgoals from an offline dataset to enhance the feasibility of the generated subgoals. The Value Selector utilizes the value function in reinforcement learning to filter the optimal subgoals from subgoal candidates. To validate our method, we conduct several long-horizon tasks in both simulation and the real world, including one locomotion task and three manipulation tasks. The obtained quantitative and qualitative data indicate that our approach achieves promising performance compared to other baseline methods. These experimental results can be seen in the website \url{//sites.google.com/view/vaesi/home}.
The ability of large language models (LLMs) to follow natural language instructions with human-level fluency suggests many opportunities in healthcare to reduce administrative burden and improve quality of care. However, evaluating LLMs on realistic text generation tasks for healthcare remains challenging. Existing question answering datasets for electronic health record (EHR) data fail to capture the complexity of information needs and documentation burdens experienced by clinicians. To address these challenges, we introduce MedAlign, a benchmark dataset of 983 natural language instructions for EHR data. MedAlign is curated by 15 clinicians (7 specialities), includes clinician-written reference responses for 303 instructions, and provides 276 longitudinal EHRs for grounding instruction-response pairs. We used MedAlign to evaluate 6 general domain LLMs, having clinicians rank the accuracy and quality of each LLM response. We found high error rates, ranging from 35% (GPT-4) to 68% (MPT-7B-Instruct), and an 8.3% drop in accuracy moving from 32k to 2k context lengths for GPT-4. Finally, we report correlations between clinician rankings and automated natural language generation metrics as a way to rank LLMs without human review. We make MedAlign available under a research data use agreement to enable LLM evaluations on tasks aligned with clinician needs and preferences.
Most fair machine learning methods either highly rely on the sensitive information of the training samples or require a large modification on the target models, which hinders their practical application. To address this issue, we propose a two-stage training algorithm named FAIRIF. It minimizes the loss over the reweighted data set (second stage) where the sample weights are computed to balance the model performance across different demographic groups (first stage). FAIRIF can be applied on a wide range of models trained by stochastic gradient descent without changing the model, while only requiring group annotations on a small validation set to compute sample weights. Theoretically, we show that, in the classification setting, three notions of disparity among different groups can be mitigated by training with the weights. Experiments on synthetic data sets demonstrate that FAIRIF yields models with better fairness-utility trade-offs against various types of bias; and on real-world data sets, we show the effectiveness and scalability of FAIRIF. Moreover, as evidenced by the experiments with pretrained models, FAIRIF is able to alleviate the unfairness issue of pretrained models without hurting their performance.
When handling streaming graphs, existing graph representation learning models encounter a catastrophic forgetting problem, where previously learned knowledge of these models is easily overwritten when learning with newly incoming graphs. In response, Continual Graph Learning emerges as a novel paradigm enabling graph representation learning from static to streaming graphs. Our prior work, CaT is a replay-based framework with a balanced continual learning procedure, which designs a small yet effective memory bank for replaying data by condensing incoming graphs. Although the CaT alleviates the catastrophic forgetting problem, there exist three issues: (1) The graph condensation algorithm derived in CaT only focuses on labelled nodes while neglecting abundant information carried by unlabelled nodes; (2) The continual training scheme of the CaT overemphasises on the previously learned knowledge, limiting the model capacity to learn from newly added memories; (3) Both the condensation process and replaying process of the CaT are time-consuming. In this paper, we propose a psudo-label guided memory bank (PUMA) CGL framework, extending from the CaT to enhance its efficiency and effectiveness by overcoming the above-mentioned weaknesses and limits. To fully exploit the information in a graph, PUMA expands the coverage of nodes during graph condensation with both labelled and unlabelled nodes. Furthermore, a training-from-scratch strategy is proposed to upgrade the previous continual learning scheme for a balanced training between the historical and the new graphs. Besides, PUMA uses a one-time prorogation and wide graph encoders to accelerate the graph condensation and the graph encoding process in the training stage to improve the efficiency of the whole framework. Extensive experiments on four datasets demonstrate the state-of-the-art performance and efficiency over existing methods.
Abbreviation expansion is a strategy used to speed up communication by limiting the amount of typing and using a language model to suggest expansions. Here we look at personalizing a Large Language Model's (LLM) suggestions based on prior conversations to enhance the relevance of predictions, particularly when the user data is small (~1000 samples). Specifically, we compare fine-tuning, prompt-tuning, and retrieval augmented generation of expanded text suggestions for abbreviated inputs. Our case study with a deployed 8B parameter LLM on a real user living with ALS, and experiments on movie character personalization indicates that (1) customization may be necessary in some scenarios and prompt-tuning generalizes well to those, (2) fine-tuning on in-domain data (with as few as 600 samples) still shows some gains, however (3) retrieval augmented few-shot selection also outperforms fine-tuning. (4) Parameter efficient tuning allows for efficient and scalable personalization. For prompt-tuning, we also find that initializing the learned "soft-prompts" to user relevant concept tokens leads to higher accuracy than random initialization.
Medical image segmentation is a fundamental and critical step in many image-guided clinical approaches. Recent success of deep learning-based segmentation methods usually relies on a large amount of labeled data, which is particularly difficult and costly to obtain especially in the medical imaging domain where only experts can provide reliable and accurate annotations. Semi-supervised learning has emerged as an appealing strategy and been widely applied to medical image segmentation tasks to train deep models with limited annotations. In this paper, we present a comprehensive review of recently proposed semi-supervised learning methods for medical image segmentation and summarized both the technical novelties and empirical results. Furthermore, we analyze and discuss the limitations and several unsolved problems of existing approaches. We hope this review could inspire the research community to explore solutions for this challenge and further promote the developments in medical image segmentation field.
Deep models trained in supervised mode have achieved remarkable success on a variety of tasks. When labeled samples are limited, self-supervised learning (SSL) is emerging as a new paradigm for making use of large amounts of unlabeled samples. SSL has achieved promising performance on natural language and image learning tasks. Recently, there is a trend to extend such success to graph data using graph neural networks (GNNs). In this survey, we provide a unified review of different ways of training GNNs using SSL. Specifically, we categorize SSL methods into contrastive and predictive models. In either category, we provide a unified framework for methods as well as how these methods differ in each component under the framework. Our unified treatment of SSL methods for GNNs sheds light on the similarities and differences of various methods, setting the stage for developing new methods and algorithms. We also summarize different SSL settings and the corresponding datasets used in each setting. To facilitate methodological development and empirical comparison, we develop a standardized testbed for SSL in GNNs, including implementations of common baseline methods, datasets, and evaluation metrics.