亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In a recent breakthrough, Mahadev constructed a classical verification of quantum computation (CVQC) protocol for a classical client to delegate decision problems in BQP to an untrusted quantum prover under computational assumptions. In this work, we explore further the feasibility of CVQC with the more general sampling problems in BQP and with the desirable blindness property. We contribute affirmative solutions to both as follows. (1) Motivated by the sampling nature of many quantum applications (e.g., quantum algorithms for machine learning and quantum supremacy tasks), we initiate the study of CVQC for quantum sampling problems (denoted by SampBQP). More precisely, in a CVQC protocol for a SampBQP problem, the prover and the verifier are given an input $x\in \{0,1\}^n$ and a quantum circuit $C$, and the goal of the classical client is to learn a sample from the output $z \leftarrow C(x)$ up to a small error, from its interaction with an untrusted prover. We demonstrate its feasibility by constructing a four-message CVQC protocol for SampBQP based on the quantum Learning With Error assumption. (2) The blindness of CVQC protocols refers to a property of the protocol where the prover learns nothing, and hence is blind, about the client's input. It is a highly desirable property that has been intensively studied for the delegation of quantum computation. We provide a simple yet powerful generic compiler that transforms any CVQC protocol to a blind one while preserving its completeness and soundness errors as well as the number of rounds. Applying our compiler to (a parallel repetition of) Mahadev's CVQC protocol for BQP and our CVQC protocol for SampBQP yields the first constant-round blind CVQC protocol for BQP and SampBQP respectively, with negligible and inverse polynomial soundness errors respectively, and negligible completeness errors.

相關內容

Motivated by DNA storage in living organisms, and by known biological mutation processes, we study the reverse-complement string-duplication system. We fully classify the conditions under which the system has full expressiveness, for all alphabets and all fixed duplication lengths. We then focus on binary systems with duplication length $2$ and prove that they have full capacity, yet surprisingly, have zero entropy-rate. Finally, by using binary single burst-insertion correcting codes, we construct codes that correct a single reverse-complement duplication of odd length, over any alphabet. The redundancy (in bits) of the constructed code does not depend on the alphabet size.

We have developed a technique combining the accuracy of quantum Monte Carlo in describing the electron correlation with the efficiency of a machine learning potential (MLP). We use kernel linear regression in combination with SOAP (Smooth Overlap Atomic Position) approach, implemented here in a very efficient way. The key ingredients are: i) a sparsification technique, based on farthest point sampling, ensuring generality and transferability of our MLPs and ii) the so called $\Delta$-learning, allowing a small training data set, a fundamental property for highly accurate but computationally demanding calculations, such as the ones based on quantum Monte Carlo. As a first application we present a benchmark study of the liquid-liquid transition of high-pressure hydrogen and show the quality of our MLP, by emphasizing the importance of high accuracy for this very debated subject, where experiments are difficult in the lab, and theory is still far from being conclusive.

Quantum computing promises remarkable approaches for processing information, but new tools are needed to compile program representations into the physical instructions required by a quantum computer. Here we present a novel adaptation of the multi-level intermediate representation (MLIR) integrated into a quantum compiler that may be used for checking program execution. We first present how MLIR enables quantum circuit transformations for efficient execution on quantum computing devices and then give an example of compiler transformations based on so-called mirror circuits. We demonstrate that mirror circuits inserted during compilation may test hardware performance by assessing quantum circuit accuracy on several superconducting and ion trap hardware platforms. Our results validate MLIR as an efficient and effective method for collecting hardware-dependent diagnostics through automated transformations of quantum circuits.

We apply digitized Quantum Annealing (QA) and Quantum Approximate Optimization Algorithm (QAOA) to a paradigmatic task of supervised learning in artificial neural networks: the optimization of synaptic weights for the binary perceptron. At variance with the usual QAOA applications to MaxCut, or to quantum spin-chains ground state preparation, the classical Hamiltonian is characterized by highly non-local multi-spin interactions. Yet, we provide evidence for the existence of optimal smooth solutions for the QAOA parameters, which are transferable among typical instances of the same problem, and we prove numerically an enhanced performance of QAOA over traditional QA. We also investigate on the role of the QAOA optimization landscape geometry in this problem, showing that the detrimental effect of a gap-closing transition encountered in QA is also negatively affecting the performance of our implementation of QAOA.

Modern machine learning systems have been applied successfully to a variety of tasks in recent years but making such systems robust against adversarially chosen modifications of input instances seems to be a much harder problem. It is probably fair to say that no fully satisfying solution has been found up to date and it is not clear if the standard formulation even allows for a principled solution. Hence, rather than following the classical path of bounded perturbations, we consider a model similar to the quantum PAC-learning model introduced by Bshouty and Jackson [1995]. Our first key contribution shows that in this model we can reduce adversarial robustness to the conjunction of two classical learning theory problems, namely (Problem 1) the problem of finding generative models and (Problem 2) the problem of devising classifiers that are robust with respect to distributional shifts. Our second key contribution is that the considered framework does not rely on specific (and hence also somewhat arbitrary) threat models like $\ell_p$ bounded perturbations. Instead, our reduction guarantees that in order to solve the adversarial robustness problem in our model it suffices to consider a single distance notion, i.e. the Hellinger distance. From the technical perspective our protocols are heavily based on the recent advances on delegation of quantum computation, e.g. Mahadev [2018]. Although the considered model is quantum and therefore not immediately applicable to ``real-world'' situations, one might hope that in the future either one can find a way to embed ``real-world'' problems into a quantum framework or that classical algorithms can be found that are capable of mimicking their powerful quantum counterparts.

We show how to translate a subset of RISC-V machine code compiled from a subset of C to quadratic unconstrained binary optimization (QUBO) models that can be solved by a quantum annealing machine: given a bound $n$, there is input $I$ to a program $P$ such that $P$ runs into a given program state $E$ executing no more than $n$ machine instructions if and only if the QUBO model of $P$ for $n$ evaluates to 0 on $I$. Thus, with more qubits on the machine than variables in the QUBO model, quantum annealing the model reaches 0 (ground) energy in constant time with high probability on some input $I$ that is part of the ground state if and only if $P$ runs into $E$ on $I$ in no more than $n$ instructions. Translation takes $\mathcal{O}(n^2)$ time turning a quantum annealer into a polynomial-time symbolic execution engine and bounded model checker, eliminating their path and state explosion problems. Here, we take advantage of the fact that any machine instruction may only increase the size of the program state by $\mathcal{O}(w)$ bits where $w$ is machine word size. Translation time comes down to $\mathcal{O}(n)$ if memory consumption of $P$ is bounded by a constant, establishing a linear (quadratic) upper bound on quantum space, in number of qubits, in terms of algorithmic time (space) in classical computing. This result motivates a temporal and spatial metric of quantum advantage. Our prototypical open-source toolchain translates machine code that runs on real RISC-V hardware to models that can be solved by real quantum annealing hardware, as shown in our experiments.

Given the impeding timeline of developing good quality quantum processing units, it is the moment to rethink the approach to advance quantum computing research. Rather than waiting for quantum hardware technologies to mature, we need to start assessing in tandem the impact of the occurrence of quantum computing in various scientific fields. However, to this purpose, we need to use a complementary but quite different approach than proposed by the NISQ vision, which is heavily focused on and burdened by the engineering challenges. That is why we propose and advocate the PISQ approach: Perfect Intermediate Scale Quantum computing based on the already known concept of perfect qubits. This will allow researchers to focus much more on the development of new applications by defining the algorithms in terms of perfect qubits and evaluate them on quantum computing simulators that are executed on supercomputers. It is not the long-term solution but will currently allow universities to research on quantum logic and algorithms and companies can already start developing their internal know-how on quantum solutions.

A modern computer system, based on the von Neumann architecture, is a complicated system with several interactive modular parts. Quantum computing, as the most generic usage of quantum information, follows a hybrid architecture so far, namely, quantum algorithms are stored and controlled classically, and mainly the executions of them are quantum, leading to the so-called quantum processing units. Such a quantum-classical hybrid is constrained by its classical ingredients, and cannot reveal the computational power of a fully quantum computer system as conceived from the beginning of the field. Recently, the nature of quantum information has been further recognized, such as the no-programming and no-control theorems, and the unifying understandings of quantum algorithms and computing models. As a result, in this work we propose a model of universal quantum computer system, the quantum version of the von Neumann architecture. It uses ebits (i.e., Bell states) as elements of the quantum memory unit, and qubits as elements of the quantum control unit and processing unit. As a digital quantum system, its global configurations can be viewed as tensor-network states. Its universality is proved by the capability to execute quantum algorithms based on a program composition scheme via a universal quantum gate teleportation. It is also protected by the uncertainty principle, the fundamental law of quantum information, making it quantum-secure distinct from the classical case. In particular, we introduce a few variants of quantum circuits, including the tailed, nested, and topological ones, to characterize the roles of quantum memory and control, which could also be of independent interest in other contexts. In all, our primary study demonstrates the manifold power of quantum information and paves the way for the creation of quantum computer systems in the near future.

Quantum hardware and quantum-inspired algorithms are becoming increasingly popular for combinatorial optimization. However, these algorithms may require careful hyperparameter tuning for each problem instance. We use a reinforcement learning agent in conjunction with a quantum-inspired algorithm to solve the Ising energy minimization problem, which is equivalent to the Maximum Cut problem. The agent controls the algorithm by tuning one of its parameters with the goal of improving recently seen solutions. We propose a new Rescaled Ranked Reward (R3) method that enables stable single-player version of self-play training that helps the agent to escape local optima. The training on any problem instance can be accelerated by applying transfer learning from an agent trained on randomly generated problems. Our approach allows sampling high-quality solutions to the Ising problem with high probability and outperforms both baseline heuristics and a black-box hyperparameter optimization approach.

Quantum machine learning is expected to be one of the first potential general-purpose applications of near-term quantum devices. A major recent breakthrough in classical machine learning is the notion of generative adversarial training, where the gradients of a discriminator model are used to train a separate generative model. In this work and a companion paper, we extend adversarial training to the quantum domain and show how to construct generative adversarial networks using quantum circuits. Furthermore, we also show how to compute gradients -- a key element in generative adversarial network training -- using another quantum circuit. We give an example of a simple practical circuit ansatz to parametrize quantum machine learning models and perform a simple numerical experiment to demonstrate that quantum generative adversarial networks can be trained successfully.

北京阿比特科技有限公司