亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study addresses the application of deep learning techniques in joint sound signal classification and localization networks. Current state-of-the-art sound source localization deep learning networks lack feature aggregation within their architecture. Feature aggregation enhances model performance by enabling the consolidation of information from different feature scales, thereby improving feature robustness and invariance. This is particularly important in SSL networks, which must differentiate direct and indirect acoustic signals. To address this gap, we adapt feature aggregation techniques from computer vision neural networks to signal detection neural networks. Additionally, we propose the Scale Encoding Network (SEN) for feature aggregation to encode features from various scales, compressing the network for more computationally efficient aggregation. To evaluate the efficacy of feature aggregation in SSL networks, we integrated the following computer vision feature aggregation sub-architectures into a SSL control architecture: Path Aggregation Network (PANet), Weighted Bi-directional Feature Pyramid Network (BiFPN), and SEN. These sub-architectures were evaluated using two metrics for signal classification and two metrics for direction-of-arrival regression. PANet and BiFPN are established aggregators in computer vision models, while the proposed SEN is a more compact aggregator. The results suggest that models incorporating feature aggregations outperformed the control model, the Sound Event Localization and Detection network (SELDnet), in both sound signal classification and localization. The feature aggregation techniques enhance the performance of sound detection neural networks, particularly in direction-of-arrival regression.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網(wang)絡會議(yi)。 Publisher:IFIP。 SIT:

Re-training a deep learning model each time a single data point receives a new label is impractical due to the inherent complexity of the training process. Consequently, existing active learning (AL) algorithms tend to adopt a batch-based approach where, during each AL iteration, a set of data points is collectively chosen for annotation. However, this strategy frequently leads to redundant sampling, ultimately eroding the efficacy of the labeling procedure. In this paper, we introduce a new AL algorithm that harnesses the power of a Gaussian process surrogate in conjunction with the neural network principal learner. Our proposed model adeptly updates the surrogate learner for every new data instance, enabling it to emulate and capitalize on the continuous learning dynamics of the neural network without necessitating a complete retraining of the principal model for each individual label. Experiments on four benchmark datasets demonstrate that this approach yields significant enhancements, either rivaling or aligning with the performance of state-of-the-art techniques.

The success of deep learning hinges on enormous data and large models, which require labor-intensive annotations and heavy computation costs. Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data, which can then be used to produce similar models as the ones trained with full data. Two prior methods are shown to achieve impressive results: (1) margin sampling that focuses on selecting points with high uncertainty, and (2) core-sets or clustering methods such as k-center for informative and diverse subsets. We are not aware of any work that combines these methods in a principled manner. To this end, we develop a novel and efficient factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions. To handle large datasets, we show a parallel algorithm to run on multiple machines with approximation guarantees. The proposed algorithm achieves similar or better performance compared to other strong baselines on vision datasets such as CIFAR-10, CIFAR-100, and ImageNet.

We propose a custom learning algorithm for shallow over-parameterized neural networks, i.e., networks with single hidden layer having infinite width. The infinite width of the hidden layer serves as an abstraction for the over-parameterization. Building on the recent mean field interpretations of learning dynamics in shallow neural networks, we realize mean field learning as a computational algorithm, rather than as an analytical tool. Specifically, we design a Sinkhorn regularized proximal algorithm to approximate the distributional flow for the learning dynamics over weighted point clouds. In this setting, a contractive fixed point recursion computes the time-varying weights, numerically realizing the interacting Wasserstein gradient flow of the parameter distribution supported over the neuronal ensemble. An appealing aspect of the proposed algorithm is that the measure-valued recursions allow meshless computation. We demonstrate the proposed computational framework of interacting weighted particle evolution on binary and multi-class classification. Our algorithm performs gradient descent of the free energy associated with the risk functional.

We propose a systematic analysis of deep neural networks (DNNs) based on a signal processing technique for network parameter removal, in the form of synaptic filters that identifies the fragility, robustness and antifragility characteristics of DNN parameters. Our proposed analysis investigates if the DNN performance is impacted negatively, invariantly, or positively on both clean and adversarially perturbed test datasets when the DNN undergoes synaptic filtering. We define three \textit{filtering scores} for quantifying the fragility, robustness and antifragility characteristics of DNN parameters based on the performances for (i) clean dataset, (ii) adversarial dataset, and (iii) the difference in performances of clean and adversarial datasets. We validate the proposed systematic analysis on ResNet-18, ResNet-50, SqueezeNet-v1.1 and ShuffleNet V2 x1.0 network architectures for MNIST, CIFAR10 and Tiny ImageNet datasets. The filtering scores, for a given network architecture, identify network parameters that are invariant in characteristics across different datasets over learning epochs. Vice-versa, for a given dataset, the filtering scores identify the parameters that are invariant in characteristics across different network architectures. We show that our synaptic filtering method improves the test accuracy of ResNet and ShuffleNet models on adversarial datasets when only the robust and antifragile parameters are selectively retrained at any given epoch, thus demonstrating applications of the proposed strategy in improving model robustness.

Debugging physical computing projects provides a rich context to understand cross-disciplinary problem solving that integrates multiple domains of computing and engineering. Yet understanding and assessing students' learning of debugging remains a challenge, particularly in understudied areas such as physical computing, since finding and fixing hardware and software bugs is a deeply contextual practice. In this paper we draw on the rich history of clinical interviews to develop and pilot "failure artifact scenarios" in order to study changes in students' approaches to debugging and troubleshooting electronic textiles (e-textiles). We applied this clinical interview protocol before and after an eight-week-long e-textiles unit. We analyzed pre/post clinical interviews from 18 students at four different schools. The analysis revealed that students improved in identifying bugs with greater specificity, and across domains, and in considering multiple causes for bugs. We discuss implications for developing tools to assess students' debugging abilities through contextualized debugging scenarios in physical computing.

Recommender systems have seen significant advancements with the influence of deep learning and graph neural networks, particularly in capturing complex user-item relationships. However, these graph-based recommenders heavily depend on ID-based data, potentially disregarding valuable textual information associated with users and items, resulting in less informative learned representations. Moreover, the utilization of implicit feedback data introduces potential noise and bias, posing challenges for the effectiveness of user preference learning. While the integration of large language models (LLMs) into traditional ID-based recommenders has gained attention, challenges such as scalability issues, limitations in text-only reliance, and prompt input constraints need to be addressed for effective implementation in practical recommender systems. To address these challenges, we propose a model-agnostic framework RLMRec that aims to enhance existing recommenders with LLM-empowered representation learning. It proposes a recommendation paradigm that integrates representation learning with LLMs to capture intricate semantic aspects of user behaviors and preferences. RLMRec incorporates auxiliary textual signals, develops a user/item profiling paradigm empowered by LLMs, and aligns the semantic space of LLMs with the representation space of collaborative relational signals through a cross-view alignment framework. This work further establish a theoretical foundation demonstrating that incorporating textual signals through mutual information maximization enhances the quality of representations. In our evaluation, we integrate RLMRec with state-of-the-art recommender models, while also analyzing its efficiency and robustness to noise data. Our implementation codes are available at //github.com/HKUDS/RLMRec.

We study polynomial systems with prescribed monomial supports in the Cox rings of toric varieties built from complete polyhedral fans. We present combinatorial formulas for the dimensions of their associated subvarieties under genericity assumptions on the coefficients of the polynomials. Using these formulas, we identify at which degrees generic systems in polytopal algebras form regular sequences. Our motivation comes from sparse elimination theory, where knowing the expected dimension of these subvarieties leads to specialized algorithms and to large speed-ups for solving sparse polynomial systems. As a special case, we classify the degrees at which regular sequences defined by weighted homogeneous polynomials can be found, answering an open question in the Gr\"obner bases literature. We also show that deciding whether a sparse system is generically a regular sequence in a polytopal algebra is hard from the point of view of theoretical computational complexity.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司