The COVID-19 pandemic has significantly influenced all modes of transportation. However, it is still unclear how the pandemic affected the demand for ridesourcing services and whether these effects varied between small towns and large cities. We analyzed over 220 million ride requests in the City of Chicago (population: 2.7 million), Illinois, and 52 thousand in the Town of Innisfil (population: 37 thousand), Ontario, to investigate the impact of the COVID-19 pandemic on the ridesourcing demand in the two locations. Overall, the pandemic resulted in fewer trips in areas with higher proportions of seniors and more trips to parks and green spaces. Ridesourcing demand was adversely affected by the stringency index and COVID-19-related variables, and positively affected by vaccination rates. However, compared to Innisfil, ridesourcing services in Chicago experienced higher reductions in demand, were more affected by the number of hospitalizations and deaths, were less impacted by vaccination rates, and had lower recovery rates.
Coordinated Multiple views (CMVs) are a visualization technique that simultaneously presents multiple visualizations in separate but linked views. There are many studies that report the advantages (e.g., usefulness for finding hidden relationships) and disadvantages (e.g., cognitive load) of CMVs. But little empirical work exists on the impact of the number of views on visual anlaysis results and processes, which results in uncertainty in the relationship between the view number and visual anlaysis. In this work, we aim at investigating the relationship between the number of coordinated views and users analytic processes and results. To achieve the goal, we implemented a CMV tool for visual anlaysis. We also provided visualization duplication in the tool to help users easily create a desired number of visualization views on-the-fly. We conducted a between-subject study with 44 participants, where we asked participants to solve five analytic problems using the visual tool. Through quantitative and qualitative analysis, we discovered the positive correlation between the number of views and analytic results. We also found that visualization duplication encourages users to create more views and to take various analysis strategies. Based on the results, we provide implications and limitations of our study.
Emerging distributed cloud architectures, e.g., fog and mobile edge computing, are playing an increasingly important role in the efficient delivery of real-time stream-processing applications such as augmented reality, multiplayer gaming, and industrial automation. While such applications require processed streams to be shared and simultaneously consumed by multiple users/devices, existing technologies lack efficient mechanisms to deal with their inherent multicast nature, leading to unnecessary traffic redundancy and network congestion. In this paper, we establish a unified framework for distributed cloud network control with generalized (mixed-cast) traffic flows that allows optimizing the distributed execution of the required packet processing, forwarding, and replication operations. We first characterize the enlarged multicast network stability region under the new control framework (with respect to its unicast counterpart). We then design a novel queuing system that allows scheduling data packets according to their current destination sets, and leverage Lyapunov drift-plus-penalty theory to develop the first fully decentralized, throughput- and cost-optimal algorithm for multicast cloud network flow control. Numerical experiments validate analytical results and demonstrate the performance gain of the proposed design over existing cloud network control techniques.
The Coronavirus disease 2019 (COVID-19) outbreak quickly spread around the world, resulting in over 240 million infections and 4 million deaths by Oct 2021. While the virus is spreading from person to person silently, fear has also been spreading around the globe. The COVID-19 information from the Australian Government is convincing but not timely or detailed, and there is much information on social networks with both facts and rumors. As software engineers, we have spontaneously and rapidly constructed a COVID-19 information dashboard aggregating reliable information semi-automatically checked from different sources for providing one-stop information sharing site about the latest status in Australia. Inspired by the John Hopkins University COVID-19 Map, our dashboard contains the case statistics, case distribution, government policy, latest news, with interactive visualization. In this paper, we present a participant's in-person observations in which the authors acted as founders of //covid-19-au.com/ serving more than 830K users with 14M page views since March 2020. According to our first-hand experience, we summarize 9 lessons for developers, researchers and instructors. These lessons may inspire the development, research and teaching in software engineer aspects for coping with similar public crises in the future.
Cryptocurrency has been extensively studied as a decentralized financial technology built on blockchain. However, there is a lack of understanding of user experience with cryptocurrency exchanges, the main means for novice users to interact with cryptocurrency. We conduct a qualitative study to provide a panoramic view of user experience and security perception of exchanges. All 15 Chinese participants mainly use centralized exchanges (CEX) instead of decentralized exchanges (DEX) to trade decentralized cryptocurrency, which is paradoxical. A closer examination reveals that CEXes provide better usability and charge lower transaction fee than DEXes. Country-specific security perceptions are observed. Though DEXes provide better anonymity and privacy protection, and are free of governmental regulation, these are not necessary features for many participants. Based on the findings, we propose design implications to make cryptocurrency trading more decentralized.
The concept of federated learning (FL) was first proposed by Google in 2016. Thereafter, FL has been widely studied for the feasibility of application in various fields due to its potential to make full use of data without compromising the privacy. However, limited by the capacity of wireless data transmission, the employment of federated learning on mobile devices has been making slow progress in practical. The development and commercialization of the 5th generation (5G) mobile networks has shed some light on this. In this paper, we analyze the challenges of existing federated learning schemes for mobile devices and propose a novel cross-device federated learning framework, which utilizes the anonymous communication technology and ring signature to protect the privacy of participants while reducing the computation overhead of mobile devices participating in FL. In addition, our scheme implements a contribution-based incentive mechanism to encourage mobile users to participate in FL. We also give a case study of autonomous driving. Finally, we present the performance evaluation of the proposed scheme and discuss some open issues in federated learning.
During the COVID-19 pandemic, most countries have experienced some form of remote education through video conferencing software platforms. However, these software platforms fail to reduce immersion and replicate the classroom experience. The currently emerging Metaverse addresses many of such limitations by offering blended physical-digital environments. This paper aims to assess how the Metaverse can support and improve e-learning. We first survey the latest applications of blended environments in education and highlight the primary challenges and opportunities. Accordingly, we derive our proposal for a virtual-physical blended classroom configuration that brings students and teachers into a shared educational Metaverse. We focus on the system architecture of the Metaverse classroom to achieve real-time synchronization of a large number of participants and activities across physical (mixed reality classrooms) and virtual (remote VR platform) learning spaces. Our proposal attempts to transform the traditional physical classroom into virtual-physical cyberspace as a new social network of learners and educators connected at an unprecedented scale.
Loneliness has been associated with negative outcomes for physical and mental health. Understanding how people express and cope with various forms of loneliness is critical for early screening and targeted interventions to reduce loneliness, particularly among vulnerable groups such as young adults. To examine how different forms of loneliness and coping strategies manifest in loneliness self-disclosure, we built a dataset, FIG-Loneliness (FIne-Grained Loneliness) by using Reddit posts in two young adult-focused forums and two loneliness related forums consisting of a diverse age group. We provided annotations by trained human annotators for binary and fine-grained loneliness classifications of the posts. Trained on FIG-Loneliness, two BERT-based models were used to understand loneliness forms and authors' coping strategies in these forums. Our binary loneliness classification achieved an accuracy above 97%, and fine-grained loneliness category classification reached an average accuracy of 77% across all labeled categories. With FIG-Loneliness and model predictions, we found that loneliness expressions in the young adults related forums were distinct from other forums. Those in young adult-focused forums were more likely to express concerns pertaining to peer relationship, and were potentially more sensitive to geographical isolation impacted by the COVID-19 pandemic lockdown. Also, we showed that different forms of loneliness have differential use in coping strategies.
The coronavirus pandemic has spread over the past two years in our highly connected and information-dense society. Nonetheless, disseminating accurate and up-to-date information on the spread of this pandemic remains a challenge. In this context, opting for a solution based on conversational artificial intelligence, also known under the name of the chatbot, is proving to be an unavoidable solution, especially since it has already shown its effectiveness in fighting the coronavirus crisis in several countries. This work proposes to design and implement a smart chatbot on the theme of COVID-19, called COVIBOT, which will be useful in the context of Saudi Arabia. COVIBOT is a generative-based contextual chatbot, which is built using machine learning APIs that are offered by the cloud-based Azure Cognitive Services. Two versions of COVIBOT are offered: English and Arabic versions. Use cases of COVIBOT are tested and validated using a scenario-based approach.
Our research aims to highlight and alleviate the complex tensions around online safety, privacy, and smartphone usage in families so that parents and teens can work together to better manage mobile privacy and security-related risks. We developed a mobile application ("app") for Community Oversight of Privacy and Security ("CO-oPS") and had parents and teens assess whether it would be applicable for use with their families. CO-oPS is an Android app that allows a group of users to co-monitor the apps installed on one another's devices and the privacy permissions granted to those apps. We conducted a study with 19 parent-teen (ages 13-17) pairs to understand how they currently managed mobile safety and app privacy within their family and then had them install, use, and evaluate the CO-oPS app. We found that both parents and teens gave little consideration to online safety and privacy before installing new apps or granting privacy permissions. When using CO-oPS, participants liked how the app increased transparency into one another's devices in a way that facilitated communication, but were less inclined to use features for in-app messaging or to hide apps from one another. Key themes related to power imbalances between parents and teens surfaced that made co-management challenging. Parents were more open to collaborative oversight than teens, who felt that it was not their place to monitor their parents, even though both often believed parents lacked the technological expertise to monitor themselves. Our study sheds light on why collaborative practices for managing online safety and privacy within families may be beneficial but also quite difficult to implement in practice. We provide recommendations for overcoming these challenges based on the insights gained from our study.
The outbreak of the COVID-19 pandemic has deeply influenced the lifestyle of the general public and the healthcare system of the society. As a promising approach to address the emerging challenges caused by the epidemic of infectious diseases like COVID-19, Internet of Medical Things (IoMT) deployed in hospitals, clinics, and healthcare centers can save the diagnosis time and improve the efficiency of medical resources though privacy and security concerns of IoMT stall the wide adoption. In order to tackle the privacy, security, and interoperability issues of IoMT, we propose a framework of blockchain-enabled IoMT by introducing blockchain to incumbent IoMT systems. In this paper, we review the benefits of this architecture and illustrate the opportunities brought by blockchain-enabled IoMT. We also provide use cases of blockchain-enabled IoMT on fighting against the COVID-19 pandemic, including the prevention of infectious diseases, location sharing and contact tracing, and the supply chain of injectable medicines. We also outline future work in this area.