亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present an approach for predicting trust links between peers in social media, one that is grounded in the artificial intelligence area of multiagent trust modeling. In particular, we propose a data-driven multi-faceted trust modeling which incorporates many distinct features for a comprehensive analysis. We focus on demonstrating how clustering of similar users enables a critical new functionality: supporting more personalized, and thus more accurate predictions for users. Illustrated in a trust-aware item recommendation task, we evaluate the proposed framework in the context of a large Yelp dataset. We then discuss how improving the detection of trusted relationships in social media can assist in supporting online users in their battle against the spread of misinformation and rumours, within a social networking environment which has recently exploded in popularity. We conclude with a reflection on a particularly vulnerable user base, older adults, in order to illustrate the value of reasoning about groups of users, looking to some future directions for integrating known preferences with insights gained through data analysis.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · INFORMS · AI · ARM · INTERACT ·
2022 年 1 月 13 日

Structured capability access ("SCA") is an emerging paradigm for the safe deployment of artificial intelligence (AI). Instead of openly disseminating AI systems, developers facilitate controlled, arm's length interactions with their AI systems. The aim is to prevent dangerous AI capabilities from being widely accessible, whilst preserving access to AI capabilities that can be used safely. The developer must both restrict how the AI system can be used, and prevent the user from circumventing these restrictions through modification or reverse engineering of the AI system. SCA is most effective when implemented through cloud-based AI services, rather than disseminating AI software that runs locally on users' hardware. Cloud-based interfaces provide the AI developer greater scope for controlling how the AI system is used, and for protecting against unauthorized modifications to the system's design. This chapter expands the discussion of "publication norms" in the AI community, which to date has focused on the question of how the informational content of AI research projects should be disseminated (e.g., code and models). Although this is an important question, there are limits to what can be achieved through the control of information flows. SCA views AI software not only as information that can be shared but also as a tool with which users can have arm's length interactions. There are early examples of SCA being practiced by AI developers, but there is much room for further development, both in the functionality of cloud-based interfaces and in the wider institutional framework.

Augmented reality technology is one of the leading technologies in the context of Industry 4.0. The promising potential application of augmented reality in industrial production systems has received much attention, which led to the concept of industrial augmented reality. On the one hand, this technology provides a suitable platform that facilitates the registration of information and access to them to help make decisions and allows concurrent training for the user while executing the production processes. This leads to increased work speed and accuracy of the user as a process operator and consequently offers economic benefits to the companies. Moreover, recent advances in the internet of things, smart sensors, and advanced algorithms have increased the possibility of widespread and more effective use of augmented reality. Currently, many research pieces are being done to expand the application of augmented reality and increase its effectiveness in industrial production processes. This research demonstrates the influence of augmented reality in Industry 4.0 while critically reviewing the industrial augmented reality history. Afterward, the paper discusses the critical role of industrial augmented reality by analyzing some use cases and their prospects. With a systematic analysis, this paper discusses the main future directions for industrial augmented reality applications in industry 4.0. The article investigates various areas of application for this technology and its impact on improving production conditions. Finally, the challenges that this technology faces and its research opportunities are discussed.

Fact-checking has become increasingly important due to the speed with which both information and misinformation can spread in the modern media ecosystem. Therefore, researchers have been exploring how fact-checking can be automated, using techniques based on natural language processing, machine learning, knowledge representation, and databases to automatically predict the veracity of claims. In this paper, we survey automated fact-checking stemming from natural language processing, and discuss its connections to related tasks and disciplines. In this process, we present an overview of existing datasets and models, aiming to unify the various definitions given and identify common concepts. Finally, we highlight challenges for future research.

Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.

Precise user and item embedding learning is the key to building a successful recommender system. Traditionally, Collaborative Filtering(CF) provides a way to learn user and item embeddings from the user-item interaction history. However, the performance is limited due to the sparseness of user behavior data. With the emergence of online social networks, social recommender systems have been proposed to utilize each user's local neighbors' preferences to alleviate the data sparsity for better user embedding modeling. We argue that, for each user of a social platform, her potential embedding is influenced by her trusted users. As social influence recursively propagates and diffuses in the social network, each user's interests change in the recursive process. Nevertheless, the current social recommendation models simply developed static models by leveraging the local neighbors of each user without simulating the recursive diffusion in the global social network, leading to suboptimal recommendation performance. In this paper, we propose a deep influence propagation model to stimulate how users are influenced by the recursive social diffusion process for social recommendation. For each user, the diffusion process starts with an initial embedding that fuses the related features and a free user latent vector that captures the latent behavior preference. The key idea of our proposed model is that we design a layer-wise influence propagation structure to model how users' latent embeddings evolve as the social diffusion process continues. We further show that our proposed model is general and could be applied when the user~(item) attributes or the social network structure is not available. Finally, extensive experimental results on two real-world datasets clearly show the effectiveness of our proposed model, with more than 13% performance improvements over the best baselines.

Nowadays, recommender systems are present in many daily activities such as online shopping, browsing social networks, etc. Given the rising demand for reinvigoration of the tourist industry through information technology, recommenders have been included into tourism websites such as Expedia, Booking or Tripadvisor, among others. Furthermore, the amount of scientific papers related to recommender systems for tourism is on solid and continuous growth since 2004. Much of this growth is due to social networks that, besides to offer researchers the possibility of using a great mass of available and constantly updated data, they also enable the recommendation systems to become more personalised, effective and natural. This paper reviews and analyses many research publications focusing on tourism recommender systems that use social networks in their projects. We detail their main characteristics, like which social networks are exploited, which data is extracted, the applied recommendation techniques, the methods of evaluation, etc. Through a comprehensive literature review, we aim to collaborate with the future recommender systems, by giving some clear classifications and descriptions of the current tourism recommender systems.

Interactive recommendation that models the explicit interactions between users and the recommender system has attracted a lot of research attentions in recent years. Most previous interactive recommendation systems only focus on optimizing recommendation accuracy while overlooking other important aspects of recommendation quality, such as the diversity of recommendation results. In this paper, we propose a novel recommendation model, named \underline{D}iversity-promoting \underline{D}eep \underline{R}einforcement \underline{L}earning (D$^2$RL), which encourages the diversity of recommendation results in interaction recommendations. More specifically, we adopt a Determinantal Point Process (DPP) model to generate diverse, while relevant item recommendations. A personalized DPP kernel matrix is maintained for each user, which is constructed from two parts: a fixed similarity matrix capturing item-item similarity, and the relevance of items dynamically learnt through an actor-critic reinforcement learning framework. We performed extensive offline experiments as well as simulated online experiments with real world datasets to demonstrate the effectiveness of the proposed model.

Although Recommender Systems have been comprehensively studied in the past decade both in industry and academia, most of current recommender systems suffer from the fol- lowing issues: 1) The data sparsity of the user-item matrix seriously affect the recommender system quality. As a result, most of traditional recommender system approaches are not able to deal with the users who have rated few items, which is known as cold start problem in recommender system. 2) Traditional recommender systems assume that users are in- dependently and identically distributed and ignore the social relation between users. However, in real life scenario, due to the exponential growth of social networking service, such as facebook and Twitter, social connections between different users play an significant role for recommender system task. In this work, aiming at providing a better recommender sys- tems by incorporating user social network information, we propose a matrix factorization framework with user social connection constraints. Experimental results on the real-life dataset shows that the proposed method performs signifi- cantly better than the state-of-the-art approaches in terms of MAE and RMSE, especially for the cold start users.

Movie recommendation systems provide users with ranked lists of movies based on individual's preferences and constraints. Two types of models are commonly used to generate ranking results: long-term models and session-based models. While long-term models represent the interactions between users and movies that are supposed to change slowly across time, session-based models encode the information of users' interests and changing dynamics of movies' attributes in short terms. In this paper, we propose an LSIC model, leveraging Long and Short-term Information in Content-aware movie recommendation using adversarial training. In the adversarial process, we train a generator as an agent of reinforcement learning which recommends the next movie to a user sequentially. We also train a discriminator which attempts to distinguish the generated list of movies from the real records. The poster information of movies is integrated to further improve the performance of movie recommendation, which is specifically essential when few ratings are available. The experiments demonstrate that the proposed model has robust superiority over competitors and sets the state-of-the-art. We will release the source code of this work after publication.

The pervasive use of social media provides massive data about individuals' online social activities and their social relations. The building block of most existing recommendation systems is the similarity between users with social relations, i.e., friends. While friendship ensures some homophily, the similarity of a user with her friends can vary as the number of friends increases. Research from sociology suggests that friends are more similar than strangers, but friends can have different interests. Exogenous information such as comments and ratings may help discern different degrees of agreement (i.e., congruity) among similar users. In this paper, we investigate if users' congruity can be incorporated into recommendation systems to improve it's performance. Experimental results demonstrate the effectiveness of embedding congruity related information into recommendation systems.

北京阿比特科技有限公司