Clustering high-dimensional spatiotemporal data using an unsupervised approach is a challenging problem for many data-driven applications. Existing state-of-the-art methods for unsupervised clustering use different similarity and distance functions but focus on either spatial or temporal features of the data. Concentrating on joint deep representation learning of spatial and temporal features, we propose Deep Spatiotemporal Clustering (DSC), a novel algorithm for the temporal clustering of high-dimensional spatiotemporal data using an unsupervised deep learning method. Inspired by the U-net architecture, DSC utilizes an autoencoder integrating CNN-RNN layers to learn latent representations of the spatiotemporal data. DSC also includes a unique layer for cluster assignment on latent representations that uses the Student's t-distribution. By optimizing the clustering loss and data reconstruction loss simultaneously, the algorithm gradually improves clustering assignments and the nonlinear mapping between low-dimensional latent feature space and high-dimensional original data space. A multivariate spatiotemporal climate dataset is used to evaluate the efficacy of the proposed method. Our extensive experiments show our approach outperforms both conventional and deep learning-based unsupervised clustering algorithms. Additionally, we compared the proposed model with its various variants (CNN encoder, CNN autoencoder, CNN-RNN encoder, CNN-RNN autoencoder, etc.) to get insight into using both the CNN and RNN layers in the autoencoder, and our proposed technique outperforms these variants in terms of clustering results.
In this paper, we develop an {\em epsilon admissible subsets} (EAS) model selection approach for performing group variable selection in the high-dimensional multivariate regression setting. This EAS strategy is designed to estimate a posterior-like, generalized fiducial distribution over a parsimonious class of models in the setting of correlated predictors and/or in the absence of a sparsity assumption. The effectiveness of our approach, to this end, is demonstrated empirically in simulation studies, and is compared to other state-of-the-art model/variable selection procedures. Furthermore, assuming a matrix-Normal linear model we show that the EAS strategy achieves {\em strong model selection consistency} in the high-dimensional setting if there does exist a sparse, true data generating set of predictors. In contrast to Bayesian approaches for model selection, our generalized fiducial approach completely avoids the problem of simultaneously having to specify arbitrary prior distributions for model parameters and penalize model complexity; our approach allows for inference directly on the model complexity. \textcolor{black}{Implementation of the method is illustrated through yeast data to identify significant cell-cycle regulating transcription factors.
One of the most powerful methods of color image recognition is the two-dimensional principle component analysis (2DQPCA) approach, which is based on quaternion representation and preserves color information very well. However, the current versions of 2DQPCA are still not feasible to extract different geometric properties of color images according to practical data analysis requirements and they are vulnerable to strong noise. In this paper, a generalized 2DQPCA approach with weighting is presented with imposing $L_{p}$ norms on both constraint and objective functions. As a unit 2DQPCA framework, this new version makes it possible to choose adaptive regularizations and constraints according to actual applications and can extract both geometric properties and color information of color images. The projection vectors generated by the deflating scheme are required to be orthogonal to each other. A weighting matrix is defined to magnify the effect of main features. This overcomes the shortcomings of traditional 2DQPCA that the recognition rate decreases as the number of principal components increases. The numerical results based on the real face databases validate that the newly proposed method is robust to noise and performs better than the state-of-the-art 2DQPCA-based algorithms and four prominent deep learning methods.
Test of independence is of fundamental importance in modern data analysis, with broad applications in variable selection, graphical models, and causal inference. When the data is high dimensional and the potential dependence signal is sparse, independence testing becomes very challenging without distributional or structural assumptions. In this paper, we propose a general framework for independence testing by first fitting a classifier that distinguishes the joint and product distributions, and then testing the significance of the fitted classifier. This framework allows us to borrow the strength of the most advanced classification algorithms developed from the modern machine learning community, making it applicable to high dimensional, complex data. By combining a sample split and a fixed permutation, our test statistic has a universal, fixed Gaussian null distribution that is independent of the underlying data distribution. Extensive simulations demonstrate the advantages of the newly proposed test compared with existing methods. We further apply the new test to a single-cell data set to test the independence between two types of single-cell sequencing measurements, whose high dimensionality and sparsity make existing methods hard to apply.
Personalized recommender systems fulfill the daily demands of customers and boost online businesses. The goal is to learn a policy that can generate a list of items that matches the user's demand or interest. While most existing methods learn a pointwise scoring model that predicts the ranking score of each individual item, recent research shows that the listwise approach can further improve the recommendation quality by modeling the intra-list correlations of items that are exposed together. This has motivated the recent list reranking and generative recommendation approaches that optimize the overall utility of the entire list. However, it is challenging to explore the combinatorial space of list actions and existing methods that use cross-entropy loss may suffer from low diversity issues. In this work, we aim to learn a policy that can generate sufficiently diverse item lists for users while maintaining high recommendation quality. The proposed solution, GFN4Rec, is a generative method that takes the insight of the flow network to ensure the alignment between list generation probability and its reward. The key advantages of our solution are the log scale reward matching loss that intrinsically improves the generation diversity and the autoregressive item selection model that captures the item mutual influences while capturing future reward of the list. As validation of our method's effectiveness and its superior diversity during active exploration, we conduct experiments on simulated online environments as well as an offline evaluation framework for two real-world datasets.
Recent efforts have been made on acoustic scene classification in the audio signal processing community. In contrast, few studies have been conducted on acoustic scene clustering, which is a newly emerging problem. Acoustic scene clustering aims at merging the audio recordings of the same class of acoustic scene into a single cluster without using prior information and training classifiers. In this study, we propose a method for acoustic scene clustering that jointly optimizes the procedures of feature learning and clustering iteration. In the proposed method, the learned feature is a deep embedding that is extracted from a deep convolutional neural network (CNN), while the clustering algorithm is the agglomerative hierarchical clustering (AHC). We formulate a unified loss function for integrating and optimizing these two procedures. Various features and methods are compared. The experimental results demonstrate that the proposed method outperforms other unsupervised methods in terms of the normalized mutual information and the clustering accuracy. In addition, the deep embedding outperforms many state-of-the-art features.
Matrix valued data has become increasingly prevalent in many applications. Most of the existing clustering methods for this type of data are tailored to the mean model and do not account for the dependence structure of the features, which can be very informative, especially in high-dimensional settings. To extract the information from the dependence structure for clustering, we propose a new latent variable model for the features arranged in matrix form, with some unknown membership matrices representing the clusters for the rows and columns. Under this model, we further propose a class of hierarchical clustering algorithms using the difference of a weighted covariance matrix as the dissimilarity measure. Theoretically, we show that under mild conditions, our algorithm attains clustering consistency in the high-dimensional setting. While this consistency result holds for our algorithm with a broad class of weighted covariance matrices, the conditions for this result depend on the choice of the weight. To investigate how the weight affects the theoretical performance of our algorithm, we establish the minimax lower bound for clustering under our latent variable model. Given these results, we identify the optimal weight in the sense that using this weight guarantees our algorithm to be minimax rate-optimal in terms of the magnitude of some cluster separation metric. The practical implementation of our algorithm with the optimal weight is also discussed. Finally, we conduct simulation studies to evaluate the finite sample performance of our algorithm and apply the method to a genomic dataset.
Clustering remains an important and challenging task of grouping samples into clusters without manual annotations. Recent works have achieved excellent results on small datasets by performing clustering on feature representations learned from self-supervised learning. However, for datasets with a large number of clusters, such as ImageNet, current methods still can not achieve high clustering performance. In this paper, we propose Contrastive Learning-based Clustering (CLC), which uses contrastive learning to directly learn cluster assignment. We decompose the representation into two parts: one encodes the categorical information under an equipartition constraint, and the other captures the instance-wise factors. We propose a contrastive loss using both parts of the representation. We theoretically analyze the proposed contrastive loss and reveal that CLC sets different weights for the negative samples while learning cluster assignments. Further gradient analysis shows that the larger weights tend to focus more on the hard negative samples. Therefore, the proposed loss has high expressiveness that enables us to efficiently learn cluster assignments. Experimental evaluation shows that CLC achieves overall state-of-the-art or highly competitive clustering performance on multiple benchmark datasets. In particular, we achieve 53.4% accuracy on the full ImageNet dataset and outperform existing methods by large margins (+ 10.2%).
Spatio-temporal forecasting is challenging attributing to the high nonlinearity in temporal dynamics as well as complex location-characterized patterns in spatial domains, especially in fields like weather forecasting. Graph convolutions are usually used for modeling the spatial dependency in meteorology to handle the irregular distribution of sensors' spatial location. In this work, a novel graph-based convolution for imitating the meteorological flows is proposed to capture the local spatial patterns. Based on the assumption of smoothness of location-characterized patterns, we propose conditional local convolution whose shared kernel on nodes' local space is approximated by feedforward networks, with local representations of coordinate obtained by horizon maps into cylindrical-tangent space as its input. The established united standard of local coordinate system preserves the orientation on geography. We further propose the distance and orientation scaling terms to reduce the impacts of irregular spatial distribution. The convolution is embedded in a Recurrent Neural Network architecture to model the temporal dynamics, leading to the Conditional Local Convolution Recurrent Network (CLCRN). Our model is evaluated on real-world weather benchmark datasets, achieving state-of-the-art performance with obvious improvements. We conduct further analysis on local pattern visualization, model's framework choice, advantages of horizon maps and etc.
In this paper, we propose a one-stage online clustering method called Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning. To be specific, for a given dataset, the positive and negative instance pairs are constructed through data augmentations and then projected into a feature space. Therein, the instance- and cluster-level contrastive learning are respectively conducted in the row and column space by maximizing the similarities of positive pairs while minimizing those of negative ones. Our key observation is that the rows of the feature matrix could be regarded as soft labels of instances, and accordingly the columns could be further regarded as cluster representations. By simultaneously optimizing the instance- and cluster-level contrastive loss, the model jointly learns representations and cluster assignments in an end-to-end manner. Extensive experimental results show that CC remarkably outperforms 17 competitive clustering methods on six challenging image benchmarks. In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19\% (39\%) performance improvement compared with the best baseline.
In this paper, we present an accurate and scalable approach to the face clustering task. We aim at grouping a set of faces by their potential identities. We formulate this task as a link prediction problem: a link exists between two faces if they are of the same identity. The key idea is that we find the local context in the feature space around an instance (face) contains rich information about the linkage relationship between this instance and its neighbors. By constructing sub-graphs around each instance as input data, which depict the local context, we utilize the graph convolution network (GCN) to perform reasoning and infer the likelihood of linkage between pairs in the sub-graphs. Experiments show that our method is more robust to the complex distribution of faces than conventional methods, yielding favorably comparable results to state-of-the-art methods on standard face clustering benchmarks, and is scalable to large datasets. Furthermore, we show that the proposed method does not need the number of clusters as prior, is aware of noises and outliers, and can be extended to a multi-view version for more accurate clustering accuracy.