亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we develop an {\em epsilon admissible subsets} (EAS) model selection approach for performing group variable selection in the high-dimensional multivariate regression setting. This EAS strategy is designed to estimate a posterior-like, generalized fiducial distribution over a parsimonious class of models in the setting of correlated predictors and/or in the absence of a sparsity assumption. The effectiveness of our approach, to this end, is demonstrated empirically in simulation studies, and is compared to other state-of-the-art model/variable selection procedures. Furthermore, assuming a matrix-Normal linear model we show that the EAS strategy achieves {\em strong model selection consistency} in the high-dimensional setting if there does exist a sparse, true data generating set of predictors. In contrast to Bayesian approaches for model selection, our generalized fiducial approach completely avoids the problem of simultaneously having to specify arbitrary prior distributions for model parameters and penalize model complexity; our approach allows for inference directly on the model complexity. \textcolor{black}{Implementation of the method is illustrated through yeast data to identify significant cell-cycle regulating transcription factors.

相關內容

Given samples from two non-negative random variables, we propose a new class of nonparametric tests for the null hypothesis that one random variable dominates the other with respect to second-order stochastic dominance. These tests are based on the Lorenz P-P plot (LPP), which is the composition between the inverse unscaled Lorenz curve of one distribution and the unscaled Lorenz curve of the other. The LPP exceeds the identity function if and only if the dominance condition is violated, providing a rather simple method to construct test statistics, given by functionals defined over the difference between the identity and the LPP. We determine a stochastic upper bound for such test statistics under the null hypothesis, and derive its limit distribution, to be approximated via bootstrap procedures. We also establish the asymptotic validity of the tests under relatively mild conditions, allowing for both dependent and independent samples. Finally, finite sample properties are investigated through simulation studies.

This paper concerns an expansion of first-order Belnap-Dunn logic which is called $\mathrm{BD}^{\supset,\mathsf{F}}$. Its connectives and quantifiers are all familiar from classical logic and its logical consequence relation is very closely connected to the one of classical logic. Results that convey this close connection are established. Fifteen classical laws of logical equivalence are used to distinguish $\mathrm{BD}^{\supset,\mathsf{F}}$ from all other four-valued logics with the same connectives and quantifiers whose logical consequence relation is as closely connected to the logical consequence relation of classical logic. It is shown that several interesting non-classical connectives added to Belnap-Dunn logic in its expansions that have been studied earlier are definable in $\mathrm{BD}^{\supset,\mathsf{F}}$. It is also established that $\mathrm{BD}^{\supset,\mathsf{F}}$ is both paraconsistent and paracomplete. Moreover, a sequent calculus proof system that is sound and complete with respect to the logical consequence relation of $\mathrm{BD}^{\supset,\mathsf{F}}$ is presented.

We investigate error of the Euler scheme in the case when the right-hand side function of the underlying ODE satisfies nonstandard assumptions such as local one-sided Lipschitz condition and local H\"older continuity. Moreover, we assume two cases in regards to information availability: exact and noisy with respect to the right-hand side function. Optimality analysis of the Euler scheme is also provided. Finally, we present the results of some numerical experiments.

Designing scalable estimation algorithms is a core challenge in modern statistics. Here we introduce a framework to address this challenge based on parallel approximants, which yields estimators with provable properties that operate on the entirety of very large, distributed data sets. We first formalize the class of statistics which admit straightforward calculation in distributed environments through independent parallelization. We then show how to use such statistics to approximate arbitrary functional operators in appropriate spaces, yielding a general estimation framework that does not require data to reside entirely in memory. We characterize the $L^2$ approximation properties of our approach and provide fully implemented examples of sample quantile calculation and local polynomial regression in a distributed computing environment. A variety of avenues and extensions remain open for future work.

Linear regression and classification models with repeated functional data are considered. For each statistical unit in the sample, a real-valued parameter is observed over time under different conditions. Two regression models based on fusion penalties are presented. The first one is a generalization of the variable fusion model based on the 1-nearest neighbor. The second one, called group fusion lasso, assumes some grouping structure of conditions and allows for homogeneity among the regression coefficient functions within groups. A finite sample numerical simulation and an application on EEG data are presented.

We consider the degree-Rips construction from topological data analysis, which provides a density-sensitive, multiparameter hierarchical clustering algorithm. We analyze its stability to perturbations of the input data using the correspondence-interleaving distance, a metric for hierarchical clusterings that we introduce. Taking certain one-parameter slices of degree-Rips recovers well-known methods for density-based clustering, but we show that these methods are unstable. However, we prove that degree-Rips, as a multiparameter object, is stable, and we propose an alternative approach for taking slices of degree-Rips, which yields a one-parameter hierarchical clustering algorithm with better stability properties. We prove that this algorithm is consistent, using the correspondence-interleaving distance. We provide an algorithm for extracting a single clustering from one-parameter hierarchical clusterings, which is stable with respect to the correspondence-interleaving distance. And, we integrate these methods into a pipeline for density-based clustering, which we call Persistable. Adapting tools from multiparameter persistent homology, we propose visualization tools that guide the selection of all parameters of the pipeline. We demonstrate Persistable on benchmark datasets, showing that it identifies multi-scale cluster structure in data.

We consider finite element approximations to the optimal constant for the Hardy inequality with exponent $p=2$ in bounded domains of dimension $n=1$ or $n\geq 3$. For finite element spaces of piecewise linear and continuous functions on a mesh of size $h$, we prove that the approximate Hardy constant, $S_h^n$, converges to the optimal Hardy constant $S^n$ no slower than $O(1/\vert \log h \vert)$. We also show that the convergence is no faster than $O(1/\vert \log h \vert^2)$ if $n=1$ or if $n\geq 3$, the domain is the unit ball, and the finite element discretization exploits the rotational symmetry of the problem. Our estimates are compared to exact values for $S_h^n$ obtained computationally.

In this paper, we derive a variant of the Taylor theorem to obtain a new minimized remainder. For a given function $f$ defined on the interval $[a,b]$, this formula is derived by introducing a linear combination of $f'$ computed at $n+1$ equally spaced points in $[a,b]$, together with $f''(a)$ and $f''(b)$. We then consider two classical applications of this Taylor-like expansion: the interpolation error and the numerical quadrature formula. We show that using this approach improves both the Lagrange $P_2$ - interpolation error estimate and the error bound of the Simpson rule in numerical integration.

We propose a new discrete choice model, called the generalized stochastic preference (GSP) model, that incorporates non-rationality into the stochastic preference (SP) choice model, also known as the rank- based choice model. Our model can explain several choice phenomena that cannot be represented by any SP model such as the compromise and attraction effects, but still subsumes the SP model class. The GSP model is defined as a distribution over consumer types, where each type extends the choice behavior of rational types in the SP model. We build on existing methods for estimating the SP model and propose an iterative estimation algorithm for the GSP model that finds new types by solving a integer linear program in each iteration. We further show that our proposed notion of non-rationality can be incorporated into other choice models, like the random utility maximization (RUM) model class as well as any of its subclasses. As a concrete example, we introduce the non-rational extension of the classical MNL model, which we term the generalized MNL (GMNL) model and present an efficient expectation-maximization (EM) algorithm for estimating the GMNL model. Numerical evaluation on real choice data shows that the GMNL and GSP models can outperform their rational counterparts in out-of-sample prediction accuracy.

Developing an efficient computational scheme for high-dimensional Bayesian variable selection in generalised linear models and survival models has always been a challenging problem due to the absence of closed-form solutions for the marginal likelihood. The RJMCMC approach can be employed to samples model and coefficients jointly, but effective design of the transdimensional jumps of RJMCMC can be challenge, making it hard to implement. Alternatively, the marginal likelihood can be derived using data-augmentation scheme e.g. Polya-gamma data argumentation for logistic regression) or through other estimation methods. However, suitable data-augmentation schemes are not available for every generalised linear and survival models, and using estimations such as Laplace approximation or correlated pseudo-marginal to derive marginal likelihood within a locally informed proposal can be computationally expensive in the "large n, large p" settings. In this paper, three main contributions are presented. Firstly, we present an extended Point-wise implementation of Adaptive Random Neighbourhood Informed proposal (PARNI) to efficiently sample models directly from the marginal posterior distribution in both generalised linear models and survival models. Secondly, in the light of the approximate Laplace approximation, we also describe an efficient and accurate estimation method for the marginal likelihood which involves adaptive parameters. Additionally, we describe a new method to adapt the algorithmic tuning parameters of the PARNI proposal by replacing the Rao-Blackwellised estimates with the combination of a warm-start estimate and an ergodic average. We present numerous numerical results from simulated data and 8 high-dimensional gene fine mapping data-sets to showcase the efficiency of the novel PARNI proposal compared to the baseline add-delete-swap proposal.

北京阿比特科技有限公司