亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a unified convergence analysis for a class of generic shuffling-type gradient methods for solving finite-sum optimization problems. Our analysis works with any sampling without replacement strategy and covers many known variants such as randomized reshuffling, deterministic or randomized single permutation, and cyclic and incremental gradient schemes. We focus on two different settings: strongly convex and nonconvex problems, but also discuss the non-strongly convex case. Our main contribution consists of new non-asymptotic and asymptotic convergence rates for a wide class of shuffling-type gradient methods in both nonconvex and convex settings. We also study uniformly randomized shuffling variants with different learning rates and model assumptions. While our rate in the nonconvex case is new and significantly improved over existing works under standard assumptions, the rate on the strongly convex one matches the existing best-known rates prior to this paper up to a constant factor without imposing a bounded gradient condition. Finally, we empirically illustrate our theoretical results via two numerical examples: nonconvex logistic regression and neural network training examples. As byproducts, our results suggest some appropriate choices for diminishing learning rates in certain shuffling variants.

相關內容

In this work, we investigate the expressiveness of the "conditional mutual information" (CMI) framework of Steinke and Zakynthinou (2020) and the prospect of using it to provide a unified framework for proving generalization bounds in the realizable setting. We first demonstrate that one can use this framework to express non-trivial (but sub-optimal) bounds for any learning algorithm that outputs hypotheses from a class of bounded VC dimension. We prove that the CMI framework yields the optimal bound on the expected risk of Support Vector Machines (SVMs) for learning halfspaces. This result is an application of our general result showing that stable compression schemes Bousquet al. (2020) of size $k$ have uniformly bounded CMI of order $O(k)$. We further show that an inherent limitation of proper learning of VC classes contradicts the existence of a proper learner with constant CMI, and it implies a negative resolution to an open problem of Steinke and Zakynthinou (2020). We further study the CMI of empirical risk minimizers (ERMs) of class $H$ and show that it is possible to output all consistent classifiers (version space) with bounded CMI if and only if $H$ has a bounded star number (Hanneke and Yang (2015)). Moreover, we prove a general reduction showing that "leave-one-out" analysis is expressible via the CMI framework. As a corollary we investigate the CMI of the one-inclusion-graph algorithm proposed by Haussler et al. (1994). More generally, we show that the CMI framework is universal in the sense that for every consistent algorithm and data distribution, the expected risk vanishes as the number of samples diverges if and only if its evaluated CMI has sublinear growth with the number of samples.

Multilevel methods are among the most efficient numerical methods for solving large-scale linear systems that arise from discretized partial differential equations. The fundamental module of such methods is a two-level procedure, which consists of compatible relaxation and coarse-level correction. Regarding two-level convergence theory, most previous works focus on the case of exact (Galerkin) coarse solver. In practice, however, it is often too costly to solve the Galerkin coarse-level system exactly when its size is relatively large. Compared with the exact case, the convergence theory of inexact two-level methods is of more practical significance, while it is still less developed in the literature, especially when nonlinear coarse solvers are used. In this paper, we establish a general framework for analyzing the convergence of inexact two-level methods, in which the coarse-level system is solved approximately by an inner iterative procedure. The framework allows us to use various (linear, nonlinear, deterministic, randomized, or hybrid) solvers in the inner iterations, as long as the corresponding accuracy estimates are available.

Zeroth-order (ZO) optimization is widely used to handle challenging tasks, such as query-based black-box adversarial attacks and reinforcement learning. Various attempts have been made to integrate prior information into the gradient estimation procedure based on finite differences, with promising empirical results. However, their convergence properties are not well understood. This paper makes an attempt to fill up this gap by analyzing the convergence of prior-guided ZO algorithms under a greedy descent framework with various gradient estimators. We provide a convergence guarantee for the prior-guided random gradient-free (PRGF) algorithms. Moreover, to further accelerate over greedy descent methods, we present a new accelerated random search (ARS) algorithm that incorporates prior information, together with a convergence analysis. Finally, our theoretical results are confirmed by experiments on several numerical benchmarks as well as adversarial attacks.

Due to the high communication cost in distributed and federated learning, methods relying on compressed communication are becoming increasingly popular. Besides, the best theoretically and practically performing gradient-type methods invariably rely on some form of acceleration/momentum to reduce the number of communications (faster convergence), e.g., Nesterov's accelerated gradient descent (Nesterov, 1983, 2004) and Adam (Kingma and Ba, 2014). In order to combine the benefits of communication compression and convergence acceleration, we propose a \emph{compressed and accelerated} gradient method based on ANITA (Li, 2021) for distributed optimization, which we call CANITA. Our CANITA achieves the \emph{first accelerated rate} $O\bigg(\sqrt{\Big(1+\sqrt{\frac{\omega^3}{n}}\Big)\frac{L}{\epsilon}} + \omega\big(\frac{1}{\epsilon}\big)^{\frac{1}{3}}\bigg)$, which improves upon the state-of-the-art non-accelerated rate $O\left((1+\frac{\omega}{n})\frac{L}{\epsilon} + \frac{\omega^2+\omega}{\omega+n}\frac{1}{\epsilon}\right)$ of DIANA (Khaled et al., 2020) for distributed general convex problems, where $\epsilon$ is the target error, $L$ is the smooth parameter of the objective, $n$ is the number of machines/devices, and $\omega$ is the compression parameter (larger $\omega$ means more compression can be applied, and no compression implies $\omega=0$). Our results show that as long as the number of devices $n$ is large (often true in distributed/federated learning), or the compression $\omega$ is not very high, CANITA achieves the faster convergence rate $O\Big(\sqrt{\frac{L}{\epsilon}}\Big)$, i.e., the number of communication rounds is $O\Big(\sqrt{\frac{L}{\epsilon}}\Big)$ (vs. $O\big(\frac{L}{\epsilon}\big)$ achieved by previous works). As a result, CANITA enjoys the advantages of both compression (compressed communication in each round) and acceleration (much fewer communication rounds).

In the current paper we provide constructive estimation of the convergence rate for training a known class of neural networks: the multi-class logistic regression. Despite several decades of successful use, our rigorous results appear new, reflective of the gap between practice and theory of machine learning. Training a neural network is typically done via variations of the gradient descent method. If a minimum of the loss function exists and gradient descent is used as the training method, we provide an expression that relates learning rate to the rate of convergence to the minimum. The method involves an estimate of the condition number of the Hessian of the loss function. We also discuss the existence of a minimum, as it is not automatic that a minimum exists. One method of ensuring convergence is by assigning positive probabiity to every class in the training dataset.

We provide new gradient-based methods for efficiently solving a broad class of ill-conditioned optimization problems. We consider the problem of minimizing a function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ which is implicitly decomposable as the sum of $m$ unknown non-interacting smooth, strongly convex functions and provide a method which solves this problem with a number of gradient evaluations that scales (up to logarithmic factors) as the product of the square-root of the condition numbers of the components. This complexity bound (which we prove is nearly optimal) can improve almost exponentially on that of accelerated gradient methods, which grow as the square root of the condition number of $f$. Additionally, we provide efficient methods for solving stochastic, quadratic variants of this multiscale optimization problem. Rather than learn the decomposition of $f$ (which would be prohibitively expensive), our methods apply a clean recursive "Big-Step-Little-Step" interleaving of standard methods. The resulting algorithms use $\tilde{\mathcal{O}}(d m)$ space, are numerically stable, and open the door to a more fine-grained understanding of the complexity of convex optimization beyond condition number.

Self-training algorithms, which train a model to fit pseudolabels predicted by another previously-learned model, have been very successful for learning with unlabeled data using neural networks. However, the current theoretical understanding of self-training only applies to linear models. This work provides a unified theoretical analysis of self-training with deep networks for semi-supervised learning, unsupervised domain adaptation, and unsupervised learning. At the core of our analysis is a simple but realistic ``expansion'' assumption, which states that a low-probability subset of the data must expand to a neighborhood with large probability relative to the subset. We also assume that neighborhoods of examples in different classes have minimal overlap. We prove that under these assumptions, the minimizers of population objectives based on self-training and input-consistency regularization will achieve high accuracy with respect to ground-truth labels. By using off-the-shelf generalization bounds, we immediately convert this result to sample complexity guarantees for neural nets that are polynomial in the margin and Lipschitzness. Our results help explain the empirical successes of recently proposed self-training algorithms which use input consistency regularization.

Asynchronous momentum stochastic gradient descent algorithms (Async-MSGD) is one of the most popular algorithms in distributed machine learning. However, its convergence properties for these complicated nonconvex problems is still largely unknown, because of the current technical limit. Therefore, in this paper, we propose to analyze the algorithm through a simpler but nontrivial nonconvex problem - streaming PCA, which helps us to understand Aync-MSGD better even for more general problems. Specifically, we establish the asymptotic rate of convergence of Async-MSGD for streaming PCA by diffusion approximation. Our results indicate a fundamental tradeoff between asynchrony and momentum: To ensure convergence and acceleration through asynchrony, we have to reduce the momentum (compared with Sync-MSGD). To the best of our knowledge, this is the first theoretical attempt on understanding Async-MSGD for distributed nonconvex stochastic optimization. Numerical experiments on both streaming PCA and training deep neural networks are provided to support our findings for Async-MSGD.

We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司