亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a verified computation method for eigenvalues in a region and the corresponding eigenvectors of generalized Hermitian eigenvalue problems. The proposed method uses complex moments to extract the eigencomponents of interest from a random matrix and uses the Rayleigh--Ritz procedure to project a given eigenvalue problem into a reduced eigenvalue problem. The complex moment is given by contour integral and approximated by using numerical quadrature. We split the error in the complex moment into the truncation error of the quadrature and rounding errors and evaluate each. This idea for error evaluation inherits our previous Hankel matrix approach, whereas the proposed method requires half the number of quadrature points for the previous approach to reduce the truncation error to the same order. Moreover, the Rayleigh--Ritz procedure approach forms a transformation matrix that enables verification of the eigenvectors. Numerical experiments show that the proposed method is faster than previous methods while maintaining verification performance.

相關內容

We propose a block version of the randomized Gram-Schmidt process for computing a QR factorization of a matrix. Our algorithm inherits the major properties of its single-vector analogue from [Balabanov and Grigori, 2020] such as higher efficiency than the classical Gram-Schmidt algorithm and stability of the modified Gram-Schmidt algorithm, which can be refined even further by using multi-precision arithmetic. As in [Balabanov and Grigori, 2020], our algorithm has an advantage of performing standard high-dimensional operations, that define the overall computational cost, with a unit roundoff independent of the dominant dimension of the matrix. This unique feature makes the methodology especially useful for large-scale problems computed on low-precision arithmetic architectures. Block algorithms are advantageous in terms of performance as they are mainly based on cache-friendly matrix-wise operations, and can reduce communication cost in high-performance computing. The block Gram-Schmidt orthogonalization is the key element in the block Arnoldi procedure for the construction of Krylov basis, which in its turn is used in GMRES and Rayleigh-Ritz methods for the solution of linear systems and clustered eigenvalue problems. In this article, we develop randomized versions of these methods, based on the proposed randomized Gram-Schmidt algorithm, and validate them on nontrivial numerical examples.

In this paper, we consider recovering $n$ dimensional signals from $m$ binary measurements corrupted by noises and sign flips under the assumption that the target signals have low generative intrinsic dimension, i.e., the target signals can be approximately generated via an $L$-Lipschitz generator $G: \mathbb{R}^k\rightarrow\mathbb{R}^{n}, k\ll n$. Although the binary measurements model is highly nonlinear, we propose a least square decoder and prove that, up to a constant $c$, with high probability, the least square decoder achieves a sharp estimation error $\mathcal{O} (\sqrt{\frac{k\log (Ln)}{m}})$ as long as $m\geq \mathcal{O}( k\log (Ln))$. Extensive numerical simulations and comparisons with state-of-the-art methods demonstrated the least square decoder is robust to noise and sign flips, as indicated by our theory. By constructing a ReLU network with properly chosen depth and width, we verify the (approximately) deep generative prior, which is of independent interest.

In this paper, we propose a semigroup method for solving high-dimensional elliptic partial differential equations (PDEs) and the associated eigenvalue problems based on neural networks. For the PDE problems, we reformulate the original equations as variational problems with the help of semigroup operators and then solve the variational problems with neural network (NN) parameterization. The main advantages are that no mixed second-order derivative computation is needed during the stochastic gradient descent training and that the boundary conditions are taken into account automatically by the semigroup operator. Unlike popular methods like PINN \cite{raissi2019physics} and Deep Ritz \cite{weinan2018deep} where the Dirichlet boundary condition is enforced solely through penalty functions and thus changes the true solution, the proposed method is able to address the boundary conditions without penalty functions and it gives the correct true solution even when penalty functions are added, thanks to the semigroup operator. For eigenvalue problems, a primal-dual method is proposed, efficiently resolving the constraint with a simple scalar dual variable and resulting in a faster algorithm compared with the BSDE solver \cite{han2020solving} in certain problems such as the eigenvalue problem associated with the linear Schr\"odinger operator. Numerical results are provided to demonstrate the performance of the proposed methods.

In this paper a class of optimization problems with uncertain linear constraints is discussed. It is assumed that the constraint coefficients are random vectors whose probability distributions are only partially known. Possibility theory is used to model the imprecise probabilities. In one of the interpretations, a possibility distribution (a membership function of a fuzzy set) in the set of coefficient realizations induces a necessity measure, which in turn defines a family of probability distributions in this set. The distributionally robust approach is then used to transform the imprecise constraints into deterministic counterparts. Namely, the uncertain left-had side of each constraint is replaced with the expected value with respect to the worst probability distribution that can occur. It is shown how to represent the resulting problem by using linear or second order cone constraints. This leads to problems which are computationally tractable for a wide class of optimization models, in particular for linear programming.

A spectral formulation of the boundary integral equation method for antiplane problems is presented. The boundary integral equation method relates the slip and the shear stress at an interface between two half-planes. It involves evaluating a space-time convolution of the shear stress or the slip at the interface. In the spectral formulation, the convolution with respect to the spatial coordinate is performed in the spectral domain. This leads to greater numerical efficiency. Prior work on the spectral formulation of the boundary integral equation method has performed the elastodynamic convolution of the slip at the interface. In the present work, the convolution is performed of the shear stress at the interface. The spectral formulation is developed both for an interface between identical solids and for a bi-material interface. It is validated by numerically calculating the response of the interface to harmonic and to impulsive disturbances and comparing with known analytical solutions. To illustrate use of the method, dynamic slip rupture propagation with a slip-weakening friction law is simulated.

In the current work we are concerned with sequences of graphs having a grid geometry, with a uniform local structure in a bounded domain $\Omega\subset {\mathbb R}^d$, $d\ge 1$. When $\Omega=[0,1]$, such graphs include the standard Toeplitz graphs and, for $\Omega=[0,1]^d$, the considered class includes $d$-level Toeplitz graphs. In the general case, the underlying sequence of adjacency matrices has a canonical eigenvalue distribution, in the Weyl sense, and it has been shown in the theoretical part of this work that we can associate to it a symbol $\boldsymbol{\mathfrak{f}}$. The knowledge of the symbol and of its basic analytical features provides key information on the eigenvalue structure in terms of localization, spectral gap, clustering, and global distribution. In the present paper, many different applications are discussed and various numerical examples are presented in order to underline the practical use of the developed theory. Tests and applications are mainly obtained from the approximation of differential operators via numerical schemes such as Finite Differences (FDs), Finite Elements (FEs), and Isogeometric Analysis (IgA). Moreover, we show that more applications can be taken into account, since the results presented here can be applied as well to study the spectral properties of adjacency matrices and Laplacian operators of general large graphs and networks, whenever the involved matrices enjoy a uniform local structure.

To overcome topological constraints and improve the expressiveness of normalizing flow architectures, Wu, K\"ohler and No\'e introduced stochastic normalizing flows which combine deterministic, learnable flow transformations with stochastic sampling methods. In this paper, we consider stochastic normalizing flows from a Markov chain point of view. In particular, we replace transition densities by general Markov kernels and establish proofs via Radon-Nikodym derivatives which allows to incorporate distributions without densities in a sound way. Further, we generalize the results for sampling from posterior distributions as required in inverse problems. The performance of the proposed conditional stochastic normalizing flow is demonstrated by numerical examples.

In this paper, a robust and effective preconditioner for the fast Method of Moments(MoM) based Hierarchal Electric Field Integral Equation(EFIE) solver is proposed using symmetric near-field Schur's complement method. In this preconditioner, near-field blocks are scaled to a diagonal block matrix and these near-field blocks are replaced with the scaled diagonal block matrix which reduces the near-field storage memory and the overall matrix vector product time. Scaled diagonal block matrix is further used as a preconditioner and due to the block diagonal form of the final preconditioner, no additional fill-ins are introduced in its inverse. The symmetric property of the near-field blocks is exploited to reduce the preconditioner setup time. Near linear complexity of preconditioner set up and solve times is achieved by near-field block ordering, using graph bandwidth reduction algorithms and compressing the fill-in blocks in preconditioner computation. Preconditioner set up time is reduced to half by using the symmetric property and near-field block ordering. It has been shown using a complexity analysis that the cost of preconditioner construction in terms of computation and memory is linear. Numerical experiments demonstrate an average of 1.5-2.3x speed-up in the iterative solution time over Null-Field based preconditioners.

We consider Broyden's method and some accelerated schemes for nonlinear equations having a strongly regular singularity of first order with a one-dimensional nullspace. Our two main results are as follows. First, we show that the use of a preceding Newton-like step ensures convergence for starting points in a starlike domain with density 1. This extends the domain of convergence of these methods significantly. Second, we establish that the matrix updates of Broyden's method converge q-linearly with the same asymptotic factor as the iterates. This contributes to the long-standing question whether the Broyden matrices converge by showing that this is indeed the case for the setting at hand. Furthermore, we prove that the Broyden directions violate uniform linear independence, which implies that existing results for convergence of the Broyden matrices cannot be applied. Numerical experiments of high precision confirm the enlarged domain of convergence, the q-linear convergence of the matrix updates, and the lack of uniform linear independence. In addition, they suggest that these results can be extended to singularities of higher order and that Broyden's method can converge r-linearly without converging q-linearly. The underlying code is freely available.

We propose a method by which to recover an underlying graph from a set of multivariate wave signals that is discretely sampled from a solution of the graph wave equation. Herein, the graph wave equation is defined with the graph Laplacian, and its solution is explicitly given as a mode expansion of the Laplacian eigenvalues and eigenfunctions. For graph recovery, our idea is to extract modes corresponding to the square root of the eigenvalues from the discrete wave signals using the DMD method, and then to reconstruct the graph (Laplacian) from the eigenfunctions obtained as amplitudes of the modes. Moreover, in order to estimate modes more precisely, we modify the DMD method under an assumption that only stationary modes exist, because graph wave functions always satisfy this assumption. In conclusion, we demonstrate the proposed method on the wave signals over a path graph. Since our graph recovery procedure can be applied to non-wave signals, we also check its performance on human joint sensor time-series data.

北京阿比特科技有限公司