Predicting startup success presents a formidable challenge due to the inherently volatile landscape of the entrepreneurial ecosystem. The advent of extensive databases like Crunchbase jointly with available open data enables the application of machine learning and artificial intelligence for more accurate predictive analytics. This paper focuses on startups at their Series B and Series C investment stages, aiming to predict key success milestones such as achieving an Initial Public Offering (IPO), attaining unicorn status, or executing a successful Merger and Acquisition (M\&A). We introduce novel deep learning model for predicting startup success, integrating a variety of factors such as funding metrics, founder features, industry category. A distinctive feature of our research is the use of a comprehensive backtesting algorithm designed to simulate the venture capital investment process. This simulation allows for a robust evaluation of our model's performance against historical data, providing actionable insights into its practical utility in real-world investment contexts. Evaluating our model on Crunchbase's, we achieved a 14 times capital growth and successfully identified on B round high-potential startups including Revolut, DigitalOcean, Klarna, Github and others. Our empirical findings illuminate the importance of incorporating diverse feature sets in enhancing the model's predictive accuracy. In summary, our work demonstrates the considerable promise of deep learning models and alternative unstructured data in predicting startup success and sets the stage for future advancements in this research area.
We introduce a novel Dual Input Stream Transformer (DIST) for the challenging problem of assigning fixation points from eye-tracking data collected during passage reading to the line of text that the reader was actually focused on. This post-processing step is crucial for analysis of the reading data due to the presence of noise in the form of vertical drift. We evaluate DIST against nine classical approaches on a comprehensive suite of nine diverse datasets, and demonstrate DIST's superiority. By combining multiple instances of the DIST model in an ensemble we achieve an average accuracy of 98.5\% across all datasets. Our approach presents a significant step towards addressing the bottleneck of manual line assignment in reading research. Through extensive model analysis and ablation studies, we identify key factors that contribute to DIST's success, including the incorporation of line overlap features and the use of a second input stream. Through evaluation on a set of diverse datasets we demonstrate that DIST is robust to various experimental setups, making it a safe first choice for practitioners in the field.
There is mounting experimental evidence that brain-state specific neural mechanisms supported by connectomic architectures serve to combine past and contextual knowledge with current, incoming flow of evidence (e.g. from sensory systems). Such mechanisms are distributed across multiple spatial and temporal scales and require dedicated support at the levels of individual neurons and synapses. A prominent feature in the neocortex is the structure of large, deep pyramidal neurons which show a peculiar separation between an apical dendritic compartment and a basal dentritic/peri-somatic compartment, with distinctive patterns of incoming connections and brain-state specific activation mechanisms, namely apical-amplification, -isolation and -drive associated to the wakefulness, deeper NREM sleep stages and REM sleep. The cognitive roles of apical mechanisms have been demonstrated in behaving animals. In contrast, classical models of learning spiking networks are based on single compartment neurons that miss the description of mechanisms to combine apical and basal/somatic information. This work aims to provide the computational community with a two-compartment spiking neuron model which includes features that are essential for supporting brain-state specific learning and with a piece-wise linear transfer function (ThetaPlanes) at highest abstraction level to be used in large scale bio-inspired artificial intelligence systems. A machine learning algorithm, constrained by a set of fitness functions, selected the parameters defining neurons expressing the desired apical mechanisms.
We present a framework for the efficient computation of optimal Bayesian decisions under intractable likelihoods, by learning a surrogate model for the expected utility (or its distribution) as a function of the action and data spaces. We leverage recent advances in simulation-based inference and Bayesian optimization to develop active learning schemes to choose where in parameter and action spaces to simulate. This allows us to learn the optimal action in as few simulations as possible. The resulting framework is extremely simulation efficient, typically requiring fewer model calls than the associated posterior inference task alone, and a factor of $100-1000$ more efficient than Monte-Carlo based methods. Our framework opens up new capabilities for performing Bayesian decision making, particularly in the previously challenging regime where likelihoods are intractable, and simulations expensive.
We consider the general problem of Bayesian binary regression and we introduce a new class of distributions, the Perturbed Unified Skew Normal (pSUN, henceforth), which generalizes the Unified Skew-Normal (SUN) class. We show that the new class is conjugate to any binary regression model, provided that the link function may be expressed as a scale mixture of Gaussian densities. We discuss in detail the popular logit case, and we show that, when a logistic regression model is combined with a Gaussian prior, posterior summaries such as cumulants and normalizing constants can be easily obtained through the use of an importance sampling approach, opening the way to straightforward variable selection procedures. For more general priors, the proposed methodology is based on a simple Gibbs sampler algorithm. We also claim that, in the p > n case, the proposed methodology shows better performances - both in terms of mixing and accuracy - compared to the existing methods. We illustrate the performance through several simulation studies and two data analyses.
Providing dialogue agents with a profile representation can improve their consistency and coherence, leading to better conversations. However, current profile-based dialogue datasets for training such agents contain either explicit profile representations that are simple and dialogue-specific, or implicit representations that are difficult to collect. In this work, we propose a unified framework in which we bring together both standard and more sophisticated profile representations by creating a new resource where each dialogue is aligned with all possible speaker representations such as communication style, biographies, and personality. This framework allows to test several baselines built using generative language models with several profile configurations. The automatic evaluation shows that profile-based models have better generalisation capabilities than models trained on dialogues only, both in-domain and cross-domain settings. These results are consistent for fine-tuned models and instruction-based LLMs. Additionally, human evaluation demonstrates a clear preference for generations consistent with both profile and context. Finally, to account for possible privacy concerns, all experiments are done under two configurations: inter-character and intra-character. In the former, the LM stores the information about the character in its internal representation, while in the latter, the LM does not retain any personal information but uses it only at inference time.
Causal representation learning algorithms discover lower-dimensional representations of data that admit a decipherable interpretation of cause and effect; as achieving such interpretable representations is challenging, many causal learning algorithms utilize elements indicating prior information, such as (linear) structural causal models, interventional data, or weak supervision. Unfortunately, in exploratory causal representation learning, such elements and prior information may not be available or warranted. Alternatively, scientific datasets often have multiple modalities or physics-based constraints, and the use of such scientific, multimodal data has been shown to improve disentanglement in fully unsupervised settings. Consequently, we introduce a causal representation learning algorithm (causalPIMA) that can use multimodal data and known physics to discover important features with causal relationships. Our innovative algorithm utilizes a new differentiable parametrization to learn a directed acyclic graph (DAG) together with a latent space of a variational autoencoder in an end-to-end differentiable framework via a single, tractable evidence lower bound loss function. We place a Gaussian mixture prior on the latent space and identify each of the mixtures with an outcome of the DAG nodes; this novel identification enables feature discovery with causal relationships. Tested against a synthetic and a scientific dataset, our results demonstrate the capability of learning an interpretable causal structure while simultaneously discovering key features in a fully unsupervised setting.
We investigate the so-called "MMSE conjecture" from Guo et al. (2011) which asserts that two distributions on the real line with the same entropy along the heat flow coincide up to translation and symmetry. Our approach follows the path breaking contribution Ledoux (1995) which gave algebraic representations of the derivatives of said entropy in terms of multivariate polynomials. The main contributions in this note are (i) we obtain the leading terms in the polynomials from Ledoux (1995), and (ii) we provide new conditions on the source distributions ensuring the MMSE conjecture holds. As illustrating examples, our findings cover the cases of uniform and Rademacher distributions, for which previous results in the literature were inapplicable.
When modeling a vector of risk variables, extreme scenarios are often of special interest. The peaks-over-thresholds method hinges on the notion that, asymptotically, the excesses over a vector of high thresholds follow a multivariate generalized Pareto distribution. However, existing literature has primarily concentrated on the setting when all risk variables are always large simultaneously. In reality, this assumption is often not met, especially in high dimensions. In response to this limitation, we study scenarios where distinct groups of risk variables may exhibit joint extremes while others do not. These discernible groups are derived from the angular measure inherent in the corresponding max-stable distribution, whence the term extreme direction. We explore such extreme directions within the framework of multivariate generalized Pareto distributions, with a focus on their probability density functions in relation to an appropriate dominating measure. Furthermore, we provide a stochastic construction that allows any prespecified set of risk groups to constitute the distribution's extreme directions. This construction takes the form of a smoothed max-linear model and accommodates the full spectrum of conceivable max-stable dependence structures. Additionally, we introduce a generic simulation algorithm tailored for multivariate generalized Pareto distributions, offering specific implementations for extensions of the logistic and H\"usler-Reiss families capable of carrying arbitrary extreme directions.
Complete observation of event histories is often impossible due to sampling effects such as right-censoring and left-truncation, but also due to reporting delays and incomplete event adjudication. This is for example the case during interim stages of clinical trials and for health insurance claims. In this paper, we develop a parametric method that takes the aforementioned effects into account, treating the latter two as partially exogenous. The method, which takes the form of a two-step M-estimation procedure, is applicable to multistate models in general, including competing risks and recurrent event models. The effect of reporting delays is derived via thinning, extending existing results for Poisson models. To address incomplete event adjudication, we propose an imputed likelihood approach which, compared to existing methods, has the advantage of allowing for dependencies between the event history and adjudication processes as well as allowing for unreported events and multiple event types. We establish consistency and asymptotic normality under standard identifiability, integrability, and smoothness conditions, and we demonstrate the validity of the percentile bootstrap. Finally, a simulation study shows favorable finite sample performance of our method compared to other alternatives, while an application to disability insurance data illustrates its practical potential.
Data standardization has become one of the leading methods neuroimaging researchers rely on for data sharing and reproducibility. Data standardization promotes a common framework through which researchers can utilize others' data. Yet, as of today, formatting datasets that adhere to community best practices requires technical expertise involving coding and considerable knowledge of file formats and standards. We describe ezBIDS, a tool for converting neuroimaging data and associated metadata to the Brain Imaging Data Structure (BIDS) standard. ezBIDS provides four unique features: (1) No installation or programming requirements. (2) Handling of both imaging and task events data and metadata. (3) Automated inference and guidance for adherence to BIDS. (4) Multiple data management options: download BIDS data to local system, or transfer to OpenNeuro.org or brainlife.io. In sum, ezBIDS requires neither coding proficiency nor knowledge of BIDS and is the first BIDS tool to offer guided standardization, support for task events conversion, and interoperability with OpenNeuro and brainlife.io.