亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mixed-integer linear programming (MILP) is at the core of many advanced algorithms for solving fundamental problems in combinatorial optimization. The complexity of solving MILPs directly correlates with their support size, which is the minimum number of non-zero integer variables in an optimal solution. A hallmark result by Eisenbrand and Shmonin (Oper. Res. Lett., 2006) shows that any feasible integer linear program (ILP) has a solution with support size $s\leq 2m\cdot\log(4m\Delta)$, where $m$ is the number of constraints, and $\Delta$ is the largest coefficient in any constraint. Our main combinatorial result are improved support size bounds for ILPs. To improve granularity, we analyze for the largest $1$-norm $A_{\max}$ of any column of the constraint matrix, instead of $\Delta$. We show a support size upper bound of $s\leq m\cdot(\log(3A_{\max})+\sqrt{\log(A_{\max})})$, by deriving a new bound on the -1 branch of the Lambert $\mathcal{W}$ function. Additionally, we provide a lower bound of $m\log(A_{\max})$, proving our result asymptotically optimal. Furthermore, we give support bounds of the form $s\leq 2m\cdot\log(1.46A_{\max})$. These improve upon the previously best constants by Aliev. et. al. (SIAM J. Optim., 2018), because all our upper bounds hold equally with $A_{\max}$ replaced by $\sqrt{m}\Delta$. Using our combinatorial result, we obtain the fastest known approximation schemes (EPTAS) for the fundamental scheduling problem of makespan minimization of uniformly related machines ($Q\mid\mid C_{\max}$).

相關內容

In this paper, practically computable low-order approximations of potentially high-dimensional differential equations driven by geometric rough paths are proposed and investigated. In particular, equations are studied that cover the linear setting, but we allow for a certain type of dissipative nonlinearity in the drift as well. In a first step, a linear subspace is found that contains the solution space of the underlying rough differential equation (RDE). This subspace is associated to covariances of linear Ito-stochastic differential equations which is shown exploiting a Gronwall lemma for matrix differential equations. Orthogonal projections onto the identified subspace lead to a first exact reduced order system. Secondly, a linear map of the RDE solution (quantity of interest) is analyzed in terms of redundant information meaning that state variables are found that do not contribute to the quantity of interest. Once more, a link to Ito-stochastic differential equations is used. Removing such unnecessary information from the RDE provides a further dimension reduction without causing an error. Finally, we discretize a linear parabolic rough partial differential equation in space. The resulting large-order RDE is subsequently tackled with the exact reduction techniques studied in this paper. We illustrate the enormous complexity reduction potential in the corresponding numerical experiments.

Object rearrangement is a fundamental sub-task in accomplishing a great many physical tasks. As such, effectively executing rearrangement is an important skill for intelligent robots to master. In this study, we conduct the first algorithmic study on optimally solving the problem of Multi-layer Object Rearrangement on a Tabletop (MORT), in which one object may be relocated at a time, and an object can only be moved if other objects do not block its top surface. In addition, any intermediate structure during the reconfiguration process must be physically stable, i.e., it should stand without external support. To tackle the dual challenges of untangling the dependencies between objects and ensuring structural stability, we develop an algorithm that interleaves the computation of the optimal rearrangement plan and structural stability checking. Using a carefully constructed integer linear programming (ILP) model, our algorithm, Stability-aware Integer Programming-based Planner (SIPP), readily scales to optimally solve complex rearrangement problems of 3D structures with over 60 building blocks, with solution quality significantly outperforming natural greedy best-first approaches. Upon the publication of the manuscript, source code and data will be available at //github.com/arc-l/mort/

We consider the problem of approximating a $d \times d$ covariance matrix $M$ with a rank-$k$ matrix under $(\varepsilon,\delta)$-differential privacy. We present and analyze a complex variant of the Gaussian mechanism and show that the Frobenius norm of the difference between the matrix output by this mechanism and the best rank-$k$ approximation to $M$ is bounded by roughly $\tilde{O}(\sqrt{kd})$, whenever there is an appropriately large gap between the $k$'th and the $k+1$'th eigenvalues of $M$. This improves on previous work that requires that the gap between every pair of top-$k$ eigenvalues of $M$ is at least $\sqrt{d}$ for a similar bound. Our analysis leverages the fact that the eigenvalues of complex matrix Brownian motion repel more than in the real case, and uses Dyson's stochastic differential equations governing the evolution of its eigenvalues to show that the eigenvalues of the matrix $M$ perturbed by complex Gaussian noise have large gaps with high probability. Our results contribute to the analysis of low-rank approximations under average-case perturbations and to an understanding of eigenvalue gaps for random matrices, which may be of independent interest.

We introduce the notion of an $\varepsilon$-cover for a kernel range space. A kernel range space concerns a set of points $X \subset \mathbb{R}^d$ and the space of all queries by a fixed kernel (e.g., a Gaussian kernel $K(p,\cdot) = \exp(-\|p-\cdot\|^2)$). For a point set $X$ of size $n$, a query returns a vector of values $R_p \in \mathbb{R}^n$, where the $i$th coordinate $(R_p)_i = K(p,x_i)$ for $x_i \in X$. An $\varepsilon$-cover is a subset of points $Q \subset \mathbb{R}^d$ so for any $p \in \mathbb{R}^d$ that $\frac{1}{n} \|R_p - R_q\|_1\leq \varepsilon$ for some $q \in Q$. This is a smooth analog of Haussler's notion of $\varepsilon$-covers for combinatorial range spaces (e.g., defined by subsets of points within a ball query) where the resulting vectors $R_p$ are in $\{0,1\}^n$ instead of $[0,1]^n$. The kernel versions of these range spaces show up in data analysis tasks where the coordinates may be uncertain or imprecise, and hence one wishes to add some flexibility in the notion of inside and outside of a query range. Our main result is that, unlike combinatorial range spaces, the size of kernel $\varepsilon$-covers is independent of the input size $n$ and dimension $d$. We obtain a bound of $(1/\varepsilon)^{\tilde O(1/\varepsilon^2)}$, where $\tilde{O}(f(1/\varepsilon))$ hides log factors in $(1/\varepsilon)$ that can depend on the kernel. This implies that by relaxing the notion of boundaries in range queries, eventually the curse of dimensionality disappears, and may help explain the success of machine learning in very high-dimensions. We also complement this result with a lower bound of almost $(1/\varepsilon)^{\Omega(1/\varepsilon)}$, showing the exponential dependence on $1/\varepsilon$ is necessary.

We study the problem of PAC learning $\gamma$-margin halfspaces with Random Classification Noise. We establish an information-computation tradeoff suggesting an inherent gap between the sample complexity of the problem and the sample complexity of computationally efficient algorithms. Concretely, the sample complexity of the problem is $\widetilde{\Theta}(1/(\gamma^2 \epsilon))$. We start by giving a simple efficient algorithm with sample complexity $\widetilde{O}(1/(\gamma^2 \epsilon^2))$. Our main result is a lower bound for Statistical Query (SQ) algorithms and low-degree polynomial tests suggesting that the quadratic dependence on $1/\epsilon$ in the sample complexity is inherent for computationally efficient algorithms. Specifically, our results imply a lower bound of $\widetilde{\Omega}(1/(\gamma^{1/2} \epsilon^2))$ on the sample complexity of any efficient SQ learner or low-degree test.

We propose a sampling algorithm that achieves superior complexity bounds in all the classical settings (strongly log-concave, log-concave, Logarithmic-Sobolev inequality (LSI), Poincar\'e inequality) as well as more general settings with semi-smooth or composite potentials. Our algorithm is based on the proximal sampler introduced in~\citet{lee2021structured}. The performance of this proximal sampler is determined by that of the restricted Gaussian oracle (RGO), a key step in the proximal sampler. The main contribution of this work is an inexact realization of RGO based on approximate rejection sampling. To bound the inexactness of RGO, we establish a new concentration inequality for semi-smooth functions over Gaussian distributions, extending the well-known concentration inequality for Lipschitz functions. Applying our RGO implementation to the proximal sampler, we achieve state-of-the-art complexity bounds in almost all settings. For instance, for strongly log-concave distributions, our method has complexity bound $\tilde\mathcal{O}(\kappa d^{1/2})$ without warm start, better than the minimax bound for MALA. For distributions satisfying the LSI, our bound is $\tilde \mathcal{O}(\hat \kappa d^{1/2})$ where $\hat \kappa$ is the ratio between smoothness and the LSI constant, better than all existing bounds.

We derive upper bounds on the Wasserstein distance ($W_1$), with respect to $\sup$-norm, between any continuous $\mathbb{R}^d$ valued random field indexed by the $n$-sphere and the Gaussian, based on Stein's method. We develop a novel Gaussian smoothing technique that allows us to transfer a bound in a smoother metric to the $W_1$ distance. The smoothing is based on covariance functions constructed using powers of Laplacian operators, designed so that the associated Gaussian process has a tractable Cameron-Martin or Reproducing Kernel Hilbert Space. This feature enables us to move beyond one dimensional interval-based index sets that were previously considered in the literature. Specializing our general result, we obtain the first bounds on the Gaussian random field approximation of wide random neural networks of any depth and Lipschitz activation functions at the random field level. Our bounds are explicitly expressed in terms of the widths of the network and moments of the random weights. We also obtain tighter bounds when the activation function has three bounded derivatives.

This paper is interested in developing reduced order models (ROMs) for repeated simulation of fractional elliptic partial differential equations (PDEs) for multiple values of the parameters (e.g., diffusion coefficients or fractional exponent) governing these models. These problems arise in many applications including simulating Gaussian processes, and geophysical electromagnetics. The approach uses the Kato integral formula to express the solution as an integral involving the solution of a parametrized elliptic PDE, which is discretized using finite elements in space and sinc quadrature for the fractional part. The offline stage of the ROM is accelerated using a solver for shifted linear systems, MPGMRES-Sh, and using a randomized approach for compressing the snapshot matrix. Our approach is both computational and memory efficient. Numerical experiments on a range of model problems, including an application to Gaussian processes, show the benefits of our approach.

We present new min-max relations in digraphs between the number of paths satisfying certain conditions and the order of the corresponding cuts. We define these objects in order to capture, in the context of solving the half-integral linkage problem, the essential properties needed for reaching a large bramble of congestion two (or any other constant) from the terminal set. This strategy has been used ad-hoc in several articles, usually with lengthy technical proofs, and our objective is to abstract it to make it applicable in a simpler and unified way. We provide two proofs of the min-max relations, one consisting in applying Menger's Theorem on appropriately defined auxiliary digraphs, and an alternative simpler one using matroids, however with worse polynomial running time. As an application, we manage to simplify and improve several results of Edwards et al. [ESA 2017] and of Giannopoulou et al. [SODA 2022] about finding half-integral linkages in digraphs. Concerning the former, besides being simpler, our proof provides an almost optimal bound on the strong connectivity of a digraph for it to be half-integrally feasible under the presence of a large bramble of congestion two (or equivalently, if the directed tree-width is large, which is the hard case). Concerning the latter, our proof uses brambles as rerouting objects instead of cylindrical grids, hence yielding much better bounds and being somehow independent of a particular topology. We hope that our min-max relations will find further applications as, in our opinion, they are simple, robust, and versatile to be easily applicable to different types of routing problems in digraphs.

We prove the first polynomial separation between randomized and deterministic time-space tradeoffs of multi-output functions. In particular, we present a total function that on the input of $n$ elements in $[n]$, outputs $O(n)$ elements, such that: (1) There exists a randomized oblivious algorithm with space $O(\log n)$, time $O(n\log n)$ and one-way access to randomness, that computes the function with probability $1-O(1/n)$; (2) Any deterministic oblivious branching program with space $S$ and time $T$ that computes the function must satisfy $T^2S\geq\Omega(n^{2.5}/\log n)$. This implies that logspace randomized algorithms for multi-output functions cannot be black-box derandomized without an $\widetilde{\Omega}(n^{1/4})$ overhead in time. Since previously all the polynomial time-space tradeoffs of multi-output functions are proved via the Borodin-Cook method, which is a probabilistic method that inherently gives the same lower bound for randomized and deterministic branching programs, our lower bound proof is intrinsically different from previous works. We also examine other natural candidates for proving such separations, and show that any polynomial separation for these problems would resolve the long-standing open problem of proving $n^{1+\Omega(1)}$ time lower bound for decision problems with $\mathrm{polylog}(n)$ space.

北京阿比特科技有限公司