亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce the notion of an $\varepsilon$-cover for a kernel range space. A kernel range space concerns a set of points $X \subset \mathbb{R}^d$ and the space of all queries by a fixed kernel (e.g., a Gaussian kernel $K(p,\cdot) = \exp(-\|p-\cdot\|^2)$). For a point set $X$ of size $n$, a query returns a vector of values $R_p \in \mathbb{R}^n$, where the $i$th coordinate $(R_p)_i = K(p,x_i)$ for $x_i \in X$. An $\varepsilon$-cover is a subset of points $Q \subset \mathbb{R}^d$ so for any $p \in \mathbb{R}^d$ that $\frac{1}{n} \|R_p - R_q\|_1\leq \varepsilon$ for some $q \in Q$. This is a smooth analog of Haussler's notion of $\varepsilon$-covers for combinatorial range spaces (e.g., defined by subsets of points within a ball query) where the resulting vectors $R_p$ are in $\{0,1\}^n$ instead of $[0,1]^n$. The kernel versions of these range spaces show up in data analysis tasks where the coordinates may be uncertain or imprecise, and hence one wishes to add some flexibility in the notion of inside and outside of a query range. Our main result is that, unlike combinatorial range spaces, the size of kernel $\varepsilon$-covers is independent of the input size $n$ and dimension $d$. We obtain a bound of $(1/\varepsilon)^{\tilde O(1/\varepsilon^2)}$, where $\tilde{O}(f(1/\varepsilon))$ hides log factors in $(1/\varepsilon)$ that can depend on the kernel. This implies that by relaxing the notion of boundaries in range queries, eventually the curse of dimensionality disappears, and may help explain the success of machine learning in very high-dimensions. We also complement this result with a lower bound of almost $(1/\varepsilon)^{\Omega(1/\varepsilon)}$, showing the exponential dependence on $1/\varepsilon$ is necessary.

相關內容

We explore element-wise convex combinations of two permutation-aligned neural network parameter vectors $\Theta_A$ and $\Theta_B$ of size $d$. We conduct extensive experiments by examining various distributions of such model combinations parametrized by elements of the hypercube $[0,1]^{d}$ and its vicinity. Our findings reveal that broad regions of the hypercube form surfaces of low loss values, indicating that the notion of linear mode connectivity extends to a more general phenomenon which we call mode combinability. We also make several novel observations regarding linear mode connectivity and model re-basin. We demonstrate a transitivity property: two models re-based to a common third model are also linear mode connected, and a robustness property: even with significant perturbations of the neuron matchings the resulting combinations continue to form a working model. Moreover, we analyze the functional and weight similarity of model combinations and show that such combinations are non-vacuous in the sense that there are significant functional differences between the resulting models.

Given $k$ input graphs $G_1, \dots ,G_k$, where each pair $G_i$, $G_j$ with $i \neq j$ shares the same graph $G$, the problem Simultaneous Embedding With Fixed Edges (SEFE) asks whether there exists a planar drawing for each input graph such that all drawings coincide on $G$. While SEFE is still open for the case of two input graphs, the problem is NP-complete for $k \geq 3$ [Schaefer, JGAA 13]. In this work, we explore the parameterized complexity of SEFE. We show that SEFE is FPT with respect to $k$ plus the vertex cover number or the feedback edge set number of the the union graph $G^\cup = G_1 \cup \dots \cup G_k$. Regarding the shared graph $G$, we show that SEFE is NP-complete, even if $G$ is a tree with maximum degree 4. Together with a known NP-hardness reduction [Angelini et al., TCS 15], this allows us to conclude that several parameters of $G$, including the maximum degree, the maximum number of degree-1 neighbors, the vertex cover number, and the number of cutvertices are intractable. We also settle the tractability of all pairs of these parameters. We give FPT algorithms for the vertex cover number plus either of the first two parameters and for the number of cutvertices plus the maximum degree, whereas we prove all remaining combinations to be intractable.

We consider both the classical and quantum variations of $X$-secure, $E$-eavesdropped and $T$-colluding symmetric private information retrieval (SPIR). This is the first work to study SPIR with $X$-security in classical or quantum variations. We first develop a scheme for classical $X$-secure, $E$-eavesdropped and $T$-colluding SPIR (XSETSPIR) based on a modified version of cross subspace alignment (CSA), which achieves a rate of $R= 1 - \frac{X+\max(T,E)}{N}$. The modified scheme achieves the same rate as the scheme used for $X$-secure PIR with the extra benefit of symmetric privacy. Next, we extend this scheme to its quantum counterpart based on the $N$-sum box abstraction. This is the first work to consider the presence of eavesdroppers in quantum private information retrieval (QPIR). In the quantum variation, the eavesdroppers have better access to information over the quantum channel compared to the classical channel due to the over-the-air decodability. To that end, we develop another scheme specialized to combat eavesdroppers over quantum channels. The scheme proposed for $X$-secure, $E$-eavesdropped and $T$-colluding quantum SPIR (XSETQSPIR) in this work maintains the super-dense coding gain from the shared entanglement between the databases, i.e., achieves a rate of $R_Q = \min\left\{ 1, 2\left(1-\frac{X+\max(T,E)}{N}\right)\right\}$.

We introduce the 2-sorted counting logic $GC^k$ that expresses properties of hypergraphs. This logic has available k variables to address hyperedges, an unbounded number of variables to address vertices, and atomic formulas E(e,v) to express that a vertex v is contained in a hyperedge e. We show that two hypergraphs H, H' satisfy the same sentences of the logic $GC^k$ if, and only if, they are homomorphism indistinguishable over the class of hypergraphs of generalised hypertree width at most k. Here, H, H' are called homomorphism indistinguishable over a class C if for every hypergraph G in C the number of homomorphisms from G to H equals the number of homomorphisms from G to H'. This result can be viewed as a generalisation (from graphs to hypergraphs) of a result by Dvorak (2010) stating that any two (undirected, simple, finite) graphs H, H' are indistinguishable by the (k+1)-variable counting logic $C^{k+1}$ if, and only if, they are homomorphism indistinguishable on the class of graphs of tree width at most k.

Given a matrix $M\in \mathbb{R}^{m\times n}$, the low rank matrix completion problem asks us to find a rank-$k$ approximation of $M$ as $UV^\top$ for $U\in \mathbb{R}^{m\times k}$ and $V\in \mathbb{R}^{n\times k}$ by only observing a few entries specified by a set of entries $\Omega\subseteq [m]\times [n]$. In particular, we examine an approach that is widely used in practice -- the alternating minimization framework. Jain, Netrapalli and Sanghavi~\cite{jns13} showed that if $M$ has incoherent rows and columns, then alternating minimization provably recovers the matrix $M$ by observing a nearly linear in $n$ number of entries. While the sample complexity has been subsequently improved~\cite{glz17}, alternating minimization steps are required to be computed exactly. This hinders the development of more efficient algorithms and fails to depict the practical implementation of alternating minimization, where the updates are usually performed approximately in favor of efficiency. In this paper, we take a major step towards a more efficient and error-robust alternating minimization framework. To this end, we develop an analytical framework for alternating minimization that can tolerate moderate amount of errors caused by approximate updates. Moreover, our algorithm runs in time $\widetilde O(|\Omega| k)$, which is nearly linear in the time to verify the solution while preserving the sample complexity. This improves upon all prior known alternating minimization approaches which require $\widetilde O(|\Omega| k^2)$ time.

Let $G$ be a finite group given as input by its multiplication table. For a subset $S$ of $G$ and an element $g\in G$ the Cayley Group Membership Problem (denoted CGM) is to check if $g$ belongs to the subgroup generated by $S$. While this problem is easily seen to be in polynomial time, pinpointing its parallel complexity has been of research interest over the years. In this paper we further explore the parallel complexity of the abelian CGM problem, with focus on the dynamic setting: the generating set $S$ changes with insertions and deletions and the goal is to maintain a data structure that supports efficient membership queries to the subgroup $\angle{S}$. We obtain the following results: 1. We first consider the more general problem of Monoid Membership. When $G$ is a commutative monoid we give a deterministic dynamic algorithm constant time parallel algorithm for membership testing that supports $O(1)$ insertions and deletions in each step. 2. Building on the previous result we show that there is a dynamic randomized constant-time parallel algorithm for abelian CGM that supports polylogarithmically many insertions/deletions to $S$ in each step. 3. If the number of insertions/deletions is at most $O(\log n/\log\log n)$ then we obtain a deterministic dynamic constant-time parallel algorithm for the problem. 4. We obtain analogous results for the dynamic abelian Group Isomorphism.

A $d$-dimensional simplicial complex $X$ is said to support a direct product tester if any locally consistent function defined on its $k$-faces (where $k\ll d$) necessarily come from a function over its vertices. More precisely, a direct product tester has a distribution $\mu$ over pairs of $k$-faces $(A,A')$, and given query access to $F\colon X(k)\to\{0,1\}^k$ it samples $(A,A')\sim \mu$ and checks that $F[A]|_{A\cap A'} = F[A']|_{A\cap A'}$. The tester should have (1) the "completeness property", meaning that any assignment $F$ which is a direct product assignment passes the test with probability $1$, and (2) the "soundness property", meaning that if $F$ passes the test with probability $s$, then $F$ must be correlated with a direct product function. Dinur and Kaufman showed that a sufficiently good spectral expanding complex $X$ admits a direct product tester in the "high soundness" regime where $s$ is close to $1$. They asked whether there are high dimensional expanders that support direct product tests in the "low soundness", when $s$ is close to $0$. We give a characterization of high-dimensional expanders that support a direct product tester in the low soundness regime. We show that spectral expansion is insufficient, and the complex must additionally satisfy a variant of coboundary expansion, which we refer to as Unique-Games coboundary expanders. This property can be seen as a high-dimensional generalization of the standard notion of coboundary expansion over non-Abelian groups for 2-dimensional complexes. It asserts that any locally consistent Unique-Games instance obtained using the low-level faces of the complex, must admit a good global solution.

A $\mu$-constrained Boolean Max-CSP$(\psi)$ instance is a Boolean Max-CSP instance on predicate $\psi:\{0,1\}^r \to \{0,1\}$ where the objective is to find a labeling of relative weight exactly $\mu$ that maximizes the fraction of satisfied constraints. In this work, we study the approximability of constrained Boolean Max-CSPs via SDP hierarchies by relating the integrality gap of Max-CSP $(\psi)$ to its $\mu$-dependent approximation curve. Formally, assuming the Small-Set Expansion Hypothesis, we show that it is NP-hard to approximate $\mu$-constrained instances of Max-CSP($\psi$) up to factor ${\sf Gap}_{\ell,\mu}(\psi)/\log(1/\mu)^2$ (ignoring factors depending on $r$) for any $\ell \geq \ell(\mu,r)$. Here, ${\sf Gap}_{\ell,\mu}(\psi)$ is the optimal integrality gap of $\ell$-round Lasserre relaxation for $\mu$-constrained Max-CSP($\psi$) instances. Our results are derived by combining the framework of Raghavendra [STOC 2008] along with more recent advances in rounding Lasserre relaxations and reductions from the Small-Set Expansion (SSE) problem. A crucial component of our reduction is a novel way of composing generic bias-dependent dictatorship tests with SSE, which could be of independent interest.

We give a near-linear time sampler for the Gibbs distribution of the ferromagnetic Ising models with edge activities $\boldsymbol{\beta} > 1$ and external fields $\boldsymbol{\lambda}<1$ (or symmetrically, $\boldsymbol{\lambda}>1$) on general graphs with bounded or unbounded maximum degree. Our algorithm is based on the field dynamics given in [CFYZ21]. We prove the correctness and efficiency of our algorithm by establishing spectral independence of distribution of the random cluster model and the rapid mixing of Glauber dynamics on the random cluster model in a low-temperature regime, which may be of independent interest.

Chain-of-Though (CoT) prompting has shown promising performance in various reasoning tasks. Recently, Self-Consistency \citep{wang2023selfconsistency} proposes to sample a diverse set of reasoning chains which may lead to different answers while the answer that receives the most votes is selected. In this paper, we propose a novel method to use backward reasoning in verifying candidate answers. We mask a token in the question by ${\bf x}$ and ask the LLM to predict the masked token when a candidate answer is provided by \textit{a simple template}, i.e., ``\textit{\textbf{If we know the answer of the above question is \{a candidate answer\}, what is the value of unknown variable ${\bf x}$?}}'' Intuitively, the LLM is expected to predict the masked token successfully if the provided candidate answer is correct. We further propose FOBAR to combine forward and backward reasoning for estimating the probability of candidate answers. We conduct extensive experiments on six data sets and three LLMs. Experimental results demonstrate that FOBAR achieves state-of-the-art performance on various reasoning benchmarks.

北京阿比特科技有限公司