亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This research investigates the antecedents of positive and negative electronic word-of-mouth (eWOM) propensity, as well as the impact of eWOM propensity on the intention to repurchase the product. Two types of eWOM predictors were considered: product related variables and personal factors. The data were collected through an online survey conducted on a sample of 335 Romanian subjects, and the analysis method was Structural Equation Modeling. Our findings show that personal factors - social media usage behavior, marketing mavenism and need to evaluate - are the most important antecedents of the intention to write product reviews and comments online, either positive or negative. From the product related factors, only brand trust influences the propensity to provide eWOM. Furthermore, both positive and negative eWOM intentions are associated with the repurchase intention.

相關內容

Matrix-vector multiplication forms the basis of many iterative solution algorithms and as such is an important algorithm also for hierarchical matrices. However, due to its low computational intensity, its performance is typically limited by the available memory bandwidth. By optimizing the storage representation of the data within such matrices, this limitation can be lifted and the performance increased. This applies not only to hierarchical matrices but for also for other low-rank approximation schemes, e.g. block low-rank matrices.

We present the mathematical theory and its numerical validation of a method tailored to include eddy-current effects only in a part of the domain. This results in a heterogeneous problem combining an eddy-current model in a subset of the computational domain with a magneto-static model in the remainder of the domain. We adopt a two-domain two-step approach in which the primary variables of the problem are the electric scalar potential and the magnetic vector potential. We show numerical results that validate the formulation.

The diversity of knowledge encoded in large language models (LLMs) and their ability to apply this knowledge zero-shot in a range of settings makes them a promising candidate for use in decision-making. However, they are currently limited by their inability to reliably provide outputs which are explainable and contestable. In this paper, we attempt to reconcile these strengths and weaknesses by introducing a method for supplementing LLMs with argumentative reasoning. Concretely, we introduce argumentative LLMs, a method utilising LLMs to construct argumentation frameworks, which then serve as the basis for formal reasoning in decision-making. The interpretable nature of these argumentation frameworks and formal reasoning means that any decision made by the supplemented LLM may be naturally explained to, and contested by, humans. We demonstrate the effectiveness of argumentative LLMs experimentally in the decision-making task of claim verification. We obtain results that are competitive with, and in some cases surpass, comparable state-of-the-art techniques.

Current natural language processing (NLP) research tends to focus on only one or, less frequently, two dimensions - e.g., performance, privacy, fairness, or efficiency - at a time, which may lead to suboptimal conclusions and often overlooking the broader goal of achieving trustworthy NLP. Work on adapter modules (Houlsby et al., 2019; Hu et al., 2021) focuses on improving performance and efficiency, with no investigation of unintended consequences on other aspects such as fairness. To address this gap, we conduct experiments on three text classification datasets by either (1) finetuning all parameters or (2) using adapter modules. Regarding performance and efficiency, we confirm prior findings that the accuracy of adapter-enhanced models is roughly on par with that of fully finetuned models, while training time is substantially reduced. Regarding fairness, we show that adapter modules result in mixed fairness across sensitive groups. Further investigation reveals that, when the standard fine-tuned model exhibits limited biases, adapter modules typically do not introduce extra bias. On the other hand, when the finetuned model exhibits increased bias, the impact of adapter modules on bias becomes more unpredictable, introducing the risk of significantly magnifying these biases for certain groups. Our findings highlight the need for a case-by-case evaluation rather than a one-size-fits-all judgment.

Corruption is notoriously widespread in data collection. Despite extensive research, the existing literature on corruption predominantly focuses on specific settings and learning scenarios, lacking a unified view. There is still a limited understanding of how to effectively model and mitigate corruption in machine learning problems. In this work, we develop a general theory of corruption from an information-theoretic perspective - with Markov kernels as a foundational mathematical tool. We generalize the definition of corruption beyond the concept of distributional shift: corruption includes all modifications of a learning problem, including changes in model class and loss function. We will focus here on changes in probability distributions. First, we construct a provably exhaustive framework for pairwise Markovian corruptions. The framework not only allows us to study corruption types based on their input space, but also serves to unify prior works on specific corruption models and establish a consistent nomenclature. Second, we systematically analyze the consequences of corruption on learning tasks by comparing Bayes risks in the clean and corrupted scenarios. This examination sheds light on complexities arising from joint and dependent corruptions on both labels and attributes. Notably, while label corruptions affect only the loss function, more intricate cases involving attribute corruptions extend the influence beyond the loss to affect the hypothesis class. Third, building upon these results, we investigate mitigations for various corruption types. We expand the existing loss-correction results for label corruption, and identify the necessity to generalize the classical corruption-corrected learning framework to a new paradigm with weaker requirements. Within the latter setting, we provide a negative result for loss correction in the attribute and the joint corruption case.

A well-known retinal disease that sends blurry visions to the affected patients is Macular Degeneration. This research is based on classifying the healthy and macular degeneration fundus by localizing the affected region of the fundus. A CNN architecture and CNN with ResNet architecture (ResNet50, ResNet50v2, ResNet101, ResNet101v2, ResNet152, ResNet152v2) as the backbone are used to classify the two types of fundus. The data are split into three categories including (a) Training set is 90% and Testing set is 10% (b) Training set is 80% and Testing set is 20%, (c) Training set is 50% and Testing set is 50%. After the training, the best model has been selected from the evaluation metrics. Among the models, CNN with a backbone of ResNet50 performs best which gives the training accuracy of 98.7% for 90% train and 10% test data split. With this model, we have performed the Grad-CAM visualization to get the region of the affected area of the fundus.

We present a flexible, deterministic numerical method for computing left-tail rare events of sums of non-negative, independent random variables. The method is based on iterative numerical integration of linear convolutions by means of Newtons-Cotes rules. The periodicity properties of convoluted densities combined with the Trapezoidal rule are exploited to produce a robust and efficient method, and the method is flexible in the sense that it can be applied to all kinds of non-negative continuous RVs. We present an error analysis and study the benefits of utilizing Newton-Cotes rules versus the fast Fourier transform (FFT) for numerical integration, showing that although there can be efficiency-benefits to using FFT, Newton-Cotes rules tend to preserve the relative error better, and indeed do so at an acceptable computational cost. Numerical studies on problems with both known and unknown rare-event probabilities showcase the method's performance and support our theoretical findings.

Counterfactual explanations provide a popular method for analyzing the predictions of black-box systems, and they can offer the opportunity for computational recourse by suggesting actionable changes on how to change the input to obtain a different (i.e. more favorable) system output. However, recent work highlighted their vulnerability to different types of manipulations. This work studies the vulnerability of counterfactual explanations to data poisoning. We formalize data poisoning in the context of counterfactual explanations for increasing the cost of recourse on three different levels: locally for a single instance, or a sub-group of instances, or globally for all instances. We demonstrate that state-of-the-art counterfactual generation methods \& toolboxes are vulnerable to such data poisoning.

This paper presents an overview of scientific modeling and discusses the complementary strengths and weaknesses of ML methods for scientific modeling in comparison to process-based models. It also provides an introduction to the current state of research in the emerging field of scientific knowledge-guided machine learning (KGML) that aims to use both scientific knowledge and data in ML frameworks to achieve better generalizability, scientific consistency, and explainability of results. We discuss different facets of KGML research in terms of the type of scientific knowledge used, the form of knowledge-ML integration explored, and the method for incorporating scientific knowledge in ML. We also discuss some of the common categories of use cases in environmental sciences where KGML methods are being developed, using illustrative examples in each category.

This paper studies the impact of quantization in integrate-and-fire time encoding machine (IF-TEM) sampler used for bandlimited (BL) and finite-rate-of-innovation (FRI) signals. An upper bound is derived for the mean squared error (MSE) of IF-TEM sampler and is compared against that of classical analog-to-digital converters (ADCs) with uniform sampling and quantization. The interplay between a signal's energy, bandwidth, and peak amplitude is used to identify how the MSE of IF-TEM sampler with quantization is influenced by these parameters. More precisely, the quantization step size of the IF-TEM sampler can be reduced when the maximum frequency of a bandlimited signal or the number of pulses of an FRI signal is increased. Leveraging this insight, specific parameter settings are identified for which the quantized IF-TEM sampler achieves an MSE bound that is roughly 8 dB lower than that of a classical ADC with the same number of bits. Experimental results validate the theoretical conclusions.

北京阿比特科技有限公司