The correlated binomial (CB) distribution was proposed by Luce\~no (Computational Statistics $\&$ Data Analysis, 20, 1995, 511-520) as an alternative to the binomial distribution for the analysis of the data in the presence of correlations among events. Due to the complexity of the mixture likelihood of the model, it may be impossible to derive analytical expressions of the maximum likelihood estimators (MLEs) of the unknown parameters. To overcome this difficulty, we develop an expectation-maximization algorithm for computing the MLEs of the CB parameters. Numerical results from simulation studies and a real-data application showed that the proposed method is very effective by consistently reaching a global maximum. Finally, our results should be of interest to senior undergraduate or first-year graduate students and their lecturers with an emphasis on the interested applications of the EM algorithm for finding the MLEs of the parameters in discrete mixture models.
We study reinforcement learning for two-player zero-sum Markov games with simultaneous moves in the finite-horizon setting, where the transition kernel of the underlying Markov games can be parameterized by a linear function over the current state, both players' actions and the next state. In particular, we assume that we can control both players and aim to find the Nash Equilibrium by minimizing the duality gap. We propose an algorithm Nash-UCRL based on the principle "Optimism-in-Face-of-Uncertainty". Our algorithm only needs to find a Coarse Correlated Equilibrium (CCE), which is computationally efficient. Specifically, we show that Nash-UCRL can provably achieve an $\tilde{O}(dH\sqrt{T})$ regret, where $d$ is the linear function dimension, $H$ is the length of the game and $T$ is the total number of steps in the game. To assess the optimality of our algorithm, we also prove an $\tilde{\Omega}( dH\sqrt{T})$ lower bound on the regret. Our upper bound matches the lower bound up to logarithmic factors, which suggests the optimality of our algorithm.
We introduce a family of pairwise stochastic gradient estimators for gradients of expectations, which are related to the log-derivative trick, but involve pairwise interactions between samples. The simplest example of our new estimator, dubbed the fundamental trick estimator, is shown to arise from either a) introducing and approximating an integral representation based on the fundamental theorem of calculus, or b) applying the reparameterisation trick to an implicit parameterisation under infinitesimal perturbation of the parameters. From the former perspective we generalise to a reproducing kernel Hilbert space representation, giving rise to a locality parameter in the pairwise interactions mentioned above, yielding our representer trick estimator. The resulting estimators are unbiased and shown to offer an independent component of useful information in comparison with the log-derivative estimator. We provide a further novel theoretical analysis which further characterises the variance reduction afforded by the new techniques. Promising analytical and numerical examples confirm the theory and intuitions behind the new estimators.
We consider the offline constrained reinforcement learning (RL) problem, in which the agent aims to compute a policy that maximizes expected return while satisfying given cost constraints, learning only from a pre-collected dataset. This problem setting is appealing in many real-world scenarios, where direct interaction with the environment is costly or risky, and where the resulting policy should comply with safety constraints. However, it is challenging to compute a policy that guarantees satisfying the cost constraints in the offline RL setting, since the off-policy evaluation inherently has an estimation error. In this paper, we present an offline constrained RL algorithm that optimizes the policy in the space of the stationary distribution. Our algorithm, COptiDICE, directly estimates the stationary distribution corrections of the optimal policy with respect to returns, while constraining the cost upper bound, with the goal of yielding a cost-conservative policy for actual constraint satisfaction. Experimental results show that COptiDICE attains better policies in terms of constraint satisfaction and return-maximization, outperforming baseline algorithms.
In a sports competition, a team might lose a powerful incentive to exert full effort if its final rank does not depend on the outcome of the matches still to be played. Therefore, the organiser should reduce the probability of such a situation to the extent possible. Our paper provides a classification scheme to identify these weakly (where one team is indifferent) or strongly (where both teams are indifferent) stakeless games. A statistical model is estimated to simulate the UEFA Champions League groups and compare the candidate schedules used in the 2021/22 season according to the competitiveness of the matches played in the last round(s). The option followed in four of the eight groups is found to be optimal under a wide set of parameters. Minimising the number of strongly stakeless matches is verified to be a likely goal in the computer draw of the fixture that remains hidden from the public.
Covariance estimation for matrix-valued data has received an increasing interest in applications. Unlike previous works that rely heavily on matrix normal distribution assumption and the requirement of fixed matrix size, we propose a class of distribution-free regularized covariance estimation methods for high-dimensional matrix data under a separability condition and a bandable covariance structure. Under these conditions, the original covariance matrix is decomposed into a Kronecker product of two bandable small covariance matrices representing the variability over row and column directions. We formulate a unified framework for estimating bandable covariance, and introduce an efficient algorithm based on rank one unconstrained Kronecker product approximation. The convergence rates of the proposed estimators are established, and the derived minimax lower bound shows our proposed estimator is rate-optimal under certain divergence regimes of matrix size. We further introduce a class of robust covariance estimators and provide theoretical guarantees to deal with heavy-tailed data. We demonstrate the superior finite-sample performance of our methods using simulations and real applications from a gridded temperature anomalies dataset and a S&P 500 stock data analysis.
We provide a decision theoretic analysis of bandit experiments. The setting corresponds to a dynamic programming problem, but solving this directly is typically infeasible. Working within the framework of diffusion asymptotics, we define suitable notions of asymptotic Bayes and minimax risk for bandit experiments. For normally distributed rewards, the minimal Bayes risk can be characterized as the solution to a nonlinear second-order partial differential equation (PDE). Using a limit of experiments approach, we show that this PDE characterization also holds asymptotically under both parametric and non-parametric distribution of the rewards. The approach further describes the state variables it is asymptotically sufficient to restrict attention to, and therefore suggests a practical strategy for dimension reduction. The upshot is that we can approximate the dynamic programming problem defining the bandit experiment with a PDE which can be efficiently solved using sparse matrix routines. We derive the optimal Bayes and minimax policies from the numerical solutions to these equations. The proposed policies substantially dominate existing methods such as Thompson sampling. The framework also allows for substantial generalizations to the bandit problem such as time discounting and pure exploration motives.
The instrumental variable method is widely used in the health and social sciences for identification and estimation of causal effects in the presence of potentially unmeasured confounding. In order to improve efficiency, multiple instruments are routinely used, leading to concerns about bias due to possible violation of the instrumental variable assumptions. To address this concern, we introduce a new class of g-estimators that are guaranteed to remain consistent and asymptotically normal for the causal effect of interest provided that a set of at least $\gamma$ out of $K$ candidate instruments are valid, for $\gamma\leq K$ set by the analyst ex ante, without necessarily knowing the identities of the valid and invalid instruments. We provide formal semiparametric efficiency theory supporting our results. Both simulation studies and applications to the UK Biobank data demonstrate the superior empirical performance of our estimators compared to competing methods.
One of the most important problems in system identification and statistics is how to estimate the unknown parameters of a given model. Optimization methods and specialized procedures, such as Empirical Minimization (EM) can be used in case the likelihood function can be computed. For situations where one can only simulate from a parametric model, but the likelihood is difficult or impossible to evaluate, a technique known as the Two-Stage (TS) Approach can be applied to obtain reliable parametric estimates. Unfortunately, there is currently a lack of theoretical justification for TS. In this paper, we propose a statistical decision-theoretical derivation of TS, which leads to Bayesian and Minimax estimators. We also show how to apply the TS approach on models for independent and identically distributed samples, by computing quantiles of the data as a first step, and using a linear function as the second stage. The proposed method is illustrated via numerical simulations.
With the increasing penetration of distributed energy resources, distributed optimization algorithms have attracted significant attention for power systems applications due to their potential for superior scalability, privacy, and robustness to a single point-of-failure. The Alternating Direction Method of Multipliers (ADMM) is a popular distributed optimization algorithm; however, its convergence performance is highly dependent on the selection of penalty parameters, which are usually chosen heuristically. In this work, we use reinforcement learning (RL) to develop an adaptive penalty parameter selection policy for the AC optimal power flow (ACOPF) problem solved via ADMM with the goal of minimizing the number of iterations until convergence. We train our RL policy using deep Q-learning, and show that this policy can result in significantly accelerated convergence (up to a 59% reduction in the number of iterations compared to existing, curvature-informed penalty parameter selection methods). Furthermore, we show that our RL policy demonstrates promise for generalizability, performing well under unseen loading schemes as well as under unseen losses of lines and generators (up to a 50% reduction in iterations). This work thus provides a proof-of-concept for using RL for parameter selection in ADMM for power systems applications.
This paper takes a different approach for the distributed linear parameter estimation over a multi-agent network. The parameter vector is considered to be stochastic with a Gaussian distribution. The sensor measurements at each agent are linear and corrupted with additive white Gaussian noise. Under such settings, this paper presents a novel distributed estimation algorithm that fuses the the concepts of consensus and innovations by incorporating the consensus terms (of neighboring estimates) into the innovation terms. Under the assumption of distributed parameter observability, introduced in this paper, we design the optimal gain matrices such that the distributed estimates are consistent and achieves fast convergence.