亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper investigates the multi-antenna covert communications assisted by a simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS). In particular, to shelter the existence of communications between transmitter and receiver from a warden, a friendly full-duplex receiver with two antennas is leveraged to make contributions to confuse the warden. Considering the worst case, the closed-form expression of the minimum detection error probability (DEP) at the warden is derived and utilized as a covert constraint. Then, we formulate an optimization problem maximizing the covert rate of the system under the covertness constraint and quality of service (QoS) constraint with communication outage analysis. To jointly design the active and passive beamforming of the transmitter and STAR-RIS, an iterative algorithm based on globally convergent version of method of moving asymptotes (GCMMA) is proposed to effectively solve the non-convex optimization problem. Simulation results show that the proposed STAR-RIS-assisted scheme highly outperforms the case with conventional RIS.

相關內容

In ambient backscatter communication (AmBC) systems, passive tags connect to a reader by reflecting an ambient radio frequency (RF) signal. However, the reader may not know the channel states and RF source parameters and can experience interference. The traditional energy detector (TED) appears to be an ideal solution. However, it performs poorly under these conditions. To address this, we propose two new detectors: (1) A joint correlation-energy detector (JCED) based on the first-order correlation of the received samples and (2) An improved energy detector (IED) based on the p-th norm of the received signal vector. We compare the performance of the IED and TED under generalized noise modeled using the McLeish distribution and derive a general analytical formula for the area under the receiver operating characteristic (ROC) curves. Based on our results, both detectors outperform TED. For example, the probability of detection with a false alarm rate of 1% for JCED and IED is 14% and 5% higher, respectively, compared to TED. These gains are even higher using the direct interference cancellation (DIC) technique, with increases of 16% and 7%, respectively. Overall, our proposed detectors offer better performance than the TED, making them useful tools for improving AmBC system performance.

In this paper, we propose to use a hybrid relay-reflecting intelligent surface (HR-RIS) to enhance the performance of a covert communication system. Specifically, the HR-RIS consists of passive reflecting elements and active relay elements to manipulate the wireless signals from a transmitter to a desired receiver while ensuring the covertness of the transmission via avoiding such signals being detected by a warden. To fully explore the benefits offered by the HR-RIS, we first formulate the joint design of the transmit power and relay/reflection coefficients of the HR-RIS as an optimization problem to maximize the covert rate subject to a covertness constraint. To tackle the solution to this optimization problem, we then derive a closed-form expression for an upper bound on covert rate, based on which we develop an alternate algorithm to solve the formulated optimization problem. Our examination shows that the HR-RIS outperforms the traditional RIS in term of achieving a higher covert rate. Interestingly, we also observe the major part of the performance gain brought by the HR-RIS can be obtained by a small number of active relay elements (e.g., 5) and further increasing this number does not improve the covert communication performance.

We propose novel deep joint source-channel coding (DeepJSCC) algorithms for wireless image transmission over multi-input multi-output (MIMO) Rayleigh fading channels, when channel state information (CSI) is available only at the receiver. We consider two different schemes; one exploiting the spatial diversity and the other exploiting the spatial multiplexing gain of the MIMO channel, respectively. For the former, we utilize an orthogonal space-time block code (OSTBC) to achieve full diversity and increase the robustness against channel variations. In the latter, we directly map the input to the antennas, where the additional degree of freedom can be used to send more information about the source signal. Simulation results show that the diversity scheme outperforms the multiplexing scheme for lower signal-to-noise ratio (SNR) values and a smaller number of receive antennas at the AP. When the number of transmit antennas is greater than two, however, the full-diversity scheme becomes less beneficial. We also show that both the diversity and multiplexing schemes can achieve comparable performance with the state-of-the-art BPG algorithm delivered at the instantaneous capacity of the MIMO channel, which serves as an upper bound on the performance of separation-based practical systems.

LoRa backscatter (LB) communication systems can be considered as a potential candidate for ultra low power wide area networks (LPWAN) because of their low cost and low power consumption. In this paper, we comprehensively analyze LB modulation from various aspects, i.e., temporal, spectral, and error performance characteristics. First, we propose a signal model for LB signals that accounts for the limited number of loads in the tag. Then, we investigate the spectral properties of LB signals, obtaining a closed-form expression for the power spectrum. Finally, we derived the symbol error rate (SER) of LB with two decoders, i.e., the maximum likelihood (ML) and fast Fourier transform (FFT) decoders, in both additive white Gaussian noise (AWGN) and double Nakagami-m fading channels. The spectral analysis shows that out-of-band emissions for LB satisfy the European Telecommunications Standards Institute (ETSI) regulation only when considering a relatively large number of loads. For the error performance, unlike conventional LoRa, the FFT decoder is not optimal. Nevertheless, the ML decoder can achieve a performance similar to conventional LoRa with a moderate number of loads.

The increasingly crowded spectrum has spurred the design of joint radar-communications systems that share hardware resources and efficiently use the radio frequency spectrum. We study a general spectral coexistence scenario, wherein the channels and transmit signals of both radar and communications systems are unknown at the receiver. In this dual-blind deconvolution (DBD) problem, a common receiver admits a multi-carrier wireless communications signal that is overlaid with the radar signal reflected off multiple targets. The communications and radar channels are represented by continuous-valued range-time and Doppler velocities of multiple transmission paths and multiple targets. We exploit the sparsity of both channels to solve the highly ill-posed DBD problem by casting it into a sum of multivariate atomic norms (SoMAN) minimization. We devise a semidefinite program to estimate the unknown target and communications parameters using the theories of positive-hyperoctant trigonometric polynomials (PhTP). Our theoretical analyses show that the minimum number of samples required for near-perfect recovery is dependent on the logarithm of the maximum of number of radar targets and communications paths rather than their sum. We show that our SoMAN method and PhTP formulations are also applicable to more general scenarios such as unsynchronized transmission, the presence of noise, and multiple emitters. Numerical experiments demonstrate great performance enhancements during parameter recovery under different scenarios.

The full-duplex (FD) technology has the potential to radically evolve wireless systems, facilitating the integration of both communications and radar functionalities into a single device, thus, enabling joint communication and sensing (JCAS). In this paper, we present a novel approach for JCAS that incorporates a reconfigurable intelligent surface (RIS) in the near-field of an FD multiple-input multiple-output (MIMO) node, which is jointly optimized with the digital beamformers to enable JSAC and efficiently handle self-interference (SI). We propose a novel problem formulation for FD MIMO JCAS systems to jointly minimize the total received power at the FD node's radar receiver while maximizing the sum rate of downlink communications subject to a Cram\'{e}r-Rao bound (CRB) constraint. In contrast to the typically used CRB in the relevant literature, we derive a novel, more accurate, target estimation bound that fully takes into account the RIS deployment. The considered problem is solved using alternating optimization, which is guaranteed to converge to a local optimum. The simulation results demonstrate that the proposed scheme achieves significant performance improvement both for communications and sensing. It is showcased that, jointly designing the FD MIMO beamformers and the RIS phase configuration to be SI aware can significantly loosen the requirement for additional SI cancellation.

Communication plays a vital role in multi-agent systems, fostering collaboration and coordination. However, in real-world scenarios where communication is bandwidth-limited, existing multi-agent reinforcement learning (MARL) algorithms often provide agents with a binary choice: either transmitting a fixed number of bytes or no information at all. This limitation hinders the ability to effectively utilize the available bandwidth. To overcome this challenge, we present the Dynamic Size Message Scheduling (DSMS) method, which introduces a finer-grained approach to scheduling by considering the actual size of the information to be exchanged. Our contribution lies in adaptively adjusting message sizes using Fourier transform-based compression techniques, enabling agents to tailor their messages to match the allocated bandwidth while striking a balance between information loss and transmission efficiency. Receiving agents can reliably decompress the messages using the inverse Fourier transform. Experimental results demonstrate that DSMS significantly improves performance in multi-agent cooperative tasks by optimizing the utilization of bandwidth and effectively balancing information value.

Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.

Artificial Intelligence (AI) is rapidly becoming integrated into military Command and Control (C2) systems as a strategic priority for many defence forces. The successful implementation of AI is promising to herald a significant leap in C2 agility through automation. However, realistic expectations need to be set on what AI can achieve in the foreseeable future. This paper will argue that AI could lead to a fragility trap, whereby the delegation of C2 functions to an AI could increase the fragility of C2, resulting in catastrophic strategic failures. This calls for a new framework for AI in C2 to avoid this trap. We will argue that antifragility along with agility should form the core design principles for AI-enabled C2 systems. This duality is termed Agile, Antifragile, AI-Enabled Command and Control (A3IC2). An A3IC2 system continuously improves its capacity to perform in the face of shocks and surprises through overcompensation from feedback during the C2 decision-making cycle. An A3IC2 system will not only be able to survive within a complex operational environment, it will also thrive, benefiting from the inevitable shocks and volatility of war.

Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.

北京阿比特科技有限公司