亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Forecast reconciliation is a post-forecasting process that involves transforming a set of incoherent forecasts into coherent forecasts which satisfy a given set of linear constraints for a multivariate time series. In this paper we extend the current state-of-the-art cross-sectional probabilistic forecast reconciliation approach to encompass a cross-temporal framework, where temporal constraints are also applied. Our proposed methodology employs both parametric Gaussian and non-parametric bootstrap approaches to draw samples from an incoherent cross-temporal distribution. To improve the estimation of the forecast error covariance matrix, we propose using multi-step residuals, especially in the time dimension where the usual one-step residuals fail. To address high-dimensionality issues, we present four alternatives for the covariance matrix, where we exploit the two-fold nature (cross-sectional and temporal) of the cross-temporal structure, and introduce the idea of overlapping residuals. We assess the effectiveness of the proposed cross-temporal reconciliation approaches through a simulation study that investigates their theoretical and empirical properties and two forecasting experiments, using the Australian GDP and the Australian Tourism Demand datasets. For both applications, the optimal cross-temporal reconciliation approaches significantly outperform the incoherent base forecasts in terms of the Continuous Ranked Probability Score and the Energy Score. Overall, the results highlight the potential of the proposed methods to improve the accuracy of probabilistic forecasts and to address the challenge of integrating disparate scenarios while coherently taking into account short-term operational, medium-term tactical, and long-term strategic planning.

相關內容

在概率論和統計學中,協方差矩陣(也稱為自協方差矩陣,色散矩陣,方差矩陣或方差-協方差矩陣)是平方矩陣,給出了給定隨機向量的每對元素之間的協方差。 在矩陣對角線中存在方差,即每個元素與其自身的協方差。

Small-scale models offer various computational advantages, and yet to which extent size is critical for problem-solving abilities remains an open question. Specifically for solving grade school math, the smallest model size so far required to break the 80\% barrier on the GSM8K benchmark remains to be 34B. Our work studies how high-quality datasets may be the key for small language models to acquire mathematical reasoning. We introduce \texttt{TinyGSM}, a synthetic dataset of 12.3M grade school math problems paired with Python solutions, generated fully by GPT-3.5. After finetuning on \texttt{TinyGSM}, we find that a duo of a 1.3B generation model and a 1.3B verifier model can achieve 81.5\% accuracy, outperforming existing models that are orders of magnitude larger. This also rivals the performance of the GPT-3.5 ``teacher'' model (77.4\%), from which our model's training data is generated. Our approach is simple and has two key components: 1) the high-quality dataset \texttt{TinyGSM}, 2) the use of a verifier, which selects the final outputs from multiple candidate generations.

Dynamical systems across the sciences, from electrical circuits to ecological networks, undergo qualitative and often catastrophic changes in behavior, called bifurcations, when their underlying parameters cross a threshold. Existing methods predict oncoming catastrophes in individual systems but are primarily time-series-based and struggle both to categorize qualitative dynamical regimes across diverse systems and to generalize to real data. To address this challenge, we propose a data-driven, physically-informed deep-learning framework for classifying dynamical regimes and characterizing bifurcation boundaries based on the extraction of topologically invariant features. We focus on the paradigmatic case of the supercritical Hopf bifurcation, which is used to model periodic dynamics across a wide range of applications. Our convolutional attention method is trained with data augmentations that encourage the learning of topological invariants which can be used to detect bifurcation boundaries in unseen systems and to design models of biological systems like oscillatory gene regulatory networks. We further demonstrate our method's use in analyzing real data by recovering distinct proliferation and differentiation dynamics along pancreatic endocrinogenesis trajectory in gene expression space based on single-cell data. Our method provides valuable insights into the qualitative, long-term behavior of a wide range of dynamical systems, and can detect bifurcations or catastrophic transitions in large-scale physical and biological systems.

Compressed Sensing (CS) encompasses a broad array of theoretical and applied techniques for recovering signals, given partial knowledge of their coefficients. Its applications span various fields, including mathematics, physics, engineering, and several medical sciences. Motivated by our interest in the mathematics behind Magnetic Resonance Imaging (MRI) and CS, we employ convex analysis techniques to analytically determine equivalents of Lagrange multipliers for optimization problems with inequality constraints, specifically a weighted LASSO with voxel-wise weighting. We investigate this problem under assumptions on the fidelity term $\Vert{Ax-b}\Vert_2^2$, either concerning the sign of its gradient or orthogonality-like conditions of its matrix. To be more precise, we either require the sign of each coordinate of $2(Ax-b)^TA$ to be fixed within a rectangular neighborhood of the origin, with the side lengths of the rectangle dependent on the constraints, or we assume $A^TA$ to be diagonal. The objective of this work is to explore the relationship between Lagrange multipliers and the constraints of a weighted variant of LASSO, specifically in the mentioned cases where this relationship can be computed explicitly. As they scale the regularization terms of the weighted LASSO, Lagrange multipliers serve as tuning parameters for the weighted LASSO, prompting the question of their potential effective use as tuning parameters in applications like MR image reconstruction and denoising. This work represents an initial step in this direction.

Discovering underlying structures of causal relations from observational studies poses a great challenge in scientific research where randomized trials or intervention-based studies are infeasible. This challenge pertains to the lack of knowledge on pre-specified roles of cause and effect in observations studies. Leveraging Shannon's seminal work on information theory, we propose a new conceptual framework of asymmetry where any causal link between putative cause and effect is captured by unequal information flows from one variable to another. We present an entropy-based asymmetry coefficient that not only enables us to assess for whether one variable is a stronger predictor of the other, but also detects an imprint of the underlying causal relation in observational studies. Our causal discovery analytics can accommodate low-dimensional confounders naturally. The proposed methodology relies on scalable non-parametric density estimation using fast Fourier transformation, making the resulting estimation method manyfold faster than the classical bandwidth-based density estimation while maintaining comparable mean integrated squared error rates. We investigate key asymptotic properties of our methodology and utilize a data-splitting and cross-fitting technique to facilitate inference for the direction of causal relations. We illustrate the performance of our methodology through simulation studies and real data examples.

By approximating posterior distributions with weighted samples, particle filters (PFs) provide an efficient mechanism for solving non-linear sequential state estimation problems. While the effectiveness of particle filters has been recognised in various applications, their performance relies on the knowledge of dynamic models and measurement models, as well as the construction of effective proposal distributions. An emerging trend involves constructing components of particle filters using neural networks and optimising them by gradient descent, and such data-adaptive particle filtering approaches are often called differentiable particle filters. Due to the expressiveness of neural networks, differentiable particle filters are a promising computational tool for performing inference on sequential data in complex, high-dimensional tasks, such as vision-based robot localisation. In this paper, we review recent advances in differentiable particle filters and their applications. We place special emphasis on different design choices for key components of differentiable particle filters, including dynamic models, measurement models, proposal distributions, optimisation objectives, and differentiable resampling techniques.

Due to their intrinsic capabilities on parallel signal processing, optical neural networks (ONNs) have attracted extensive interests recently as a potential alternative to electronic artificial neural networks (ANNs) with reduced power consumption and low latency. Preliminary confirmation of the parallelism in optical computing has been widely done by applying the technology of wavelength division multiplexing (WDM) in the linear transformation part of neural networks. However, inter-channel crosstalk has obstructed WDM technologies to be deployed in nonlinear activation in ONNs. Here, we propose a universal WDM structure called multiplexed neuron sets (MNS) which apply WDM technologies to optical neurons and enable ONNs to be further compressed. A corresponding back-propagation (BP) training algorithm is proposed to alleviate or even cancel the influence of inter-channel crosstalk on MNS-based WDM-ONNs. For simplicity, semiconductor optical amplifiers (SOAs) are employed as an example of MNS to construct a WDM-ONN trained with the new algorithm. The result shows that the combination of MNS and the corresponding BP training algorithm significantly downsize the system and improve the energy efficiency to tens of times while giving similar performance to traditional ONNs.

Enumeration problems are often encountered as key subroutines in the exact computation of graph parameters such as chromatic number, treewidth, or treedepth. In the case of treedepth computation, the enumeration of inclusion-wise minimal separators plays a crucial role. However and quite surprisingly, the complexity status of this problem has not been settled since it has been posed as an open direction by Kloks and Kratsch in 1998. Recently at the PACE 2020 competition dedicated to treedepth computation, solvers have been circumventing that by listing all minimal $a$-$b$ separators and filtering out those that are not inclusion-wise minimal, at the cost of efficiency. Naturally, having an efficient algorithm for listing inclusion-wise minimal separators would drastically improve such practical algorithms. In this note, however, we show that no efficient algorithm is to be expected from an output-sensitive perspective, namely, we prove that there is no output-polynomial time algorithm for inclusion-wise minimal separators enumeration unless P = NP.

Forecast combination involves using multiple forecasts to create a single, more accurate prediction. Recently, feature-based forecasting has been employed to either select the most appropriate forecasting models or to optimize the weights of their combination. In this paper, we present a multi-task optimization paradigm that focuses on solving both problems simultaneously and enriches current operational research approaches to forecasting. In essence, it incorporates an additional learning and optimization task into the standard feature-based forecasting approach, focusing on the identification of an optimal set of forecasting methods. During the training phase, an optimization model with linear constraints and quadratic objective function is employed to identify accurate and diverse methods for each time series. Moreover, within the training phase, a neural network is used to learn the behavior of that optimization model. Once training is completed the candidate set of methods is identified using the network. The proposed approach elicits the essential role of diversity in feature-based forecasting and highlights the interplay between model combination and model selection when optimizing forecasting ensembles. Experimental results on a large set of series from the M4 competition dataset show that our proposal enhances point forecast accuracy compared to state-of-the-art methods.

Accurately estimating Origin-Destination (OD) matrices is a topic of increasing interest for efficient transportation network management and sustainable urban planning. Traditionally, travel surveys have supported this process; however, their availability and comprehensiveness can be limited. Moreover, the recent COVID-19 pandemic has triggered unprecedented shifts in mobility patterns, underscoring the urgency of accurate and dynamic mobility data supporting policies and decisions with data-driven evidence. In this study, we tackle these challenges by introducing an innovative pipeline for estimating dynamic OD matrices. The real motivating problem behind this is based on the Trenord railway transportation network in Lombardy, Italy. We apply a novel approach that integrates ticket and subscription sales data with passenger counts obtained from Automated Passenger Counting (APC) systems, making use of the Iterative Proportional Fitting (IPF) algorithm. Our work effectively addresses the complexities posed by incomplete and diverse data sources, showcasing the adaptability of our pipeline across various transportation contexts. Ultimately, this research bridges the gap between available data sources and the escalating need for precise OD matrices. The proposed pipeline fosters a comprehensive grasp of transportation network dynamics, providing a valuable tool for transportation operators, policymakers, and researchers. Indeed, to highlight the potentiality of dynamic OD matrices, we showcase some methods to perform anomaly detection of mobility trends in the network through such matrices and interpret them in light of events that happened in the last months of 2022.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

北京阿比特科技有限公司